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Abstract 

A general method to calculate next-to-leading order multijet cross sections is pre- 
sented. The emphasis is on how to isolate the soft and collinear divergences in multi- 
parton matrix elements. As an example, the method is used to isolate the divergences 
at leading order in the number of colours in the processes e+e- + qQ + n gluons and 
e+e- -t qcjqQ + n gluons. The usual algebraic complexity of calculating next-to-leading 
order corrections in QCD is avoided, especially the d-dimensional squaring of the real 
matrix elements and the hard phase space integrals. Some remarks about the stucture 
of the virtual contributions are made. 

As a first application, and to examine the feasibility of the approach, explicit Monte 
Carlo programs are constructed which contain the next-to-leading order corrections to 
e+e- -+ 2 jets and e+e- + 3 jets. It is demonstrated that the method works and can 
be readily applied to a variety of processes. 
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1 Introduction 

By the use of a suitable experimental jet definition, it is possible to classify experimental 
data in terms of the number of observed jets. For example, the processes, 

pp -i 711 jets, (1.1) 

pp + W/Z + 7~2 jets, (1.2) 

and, 
e+e- -+ 123 jets, (1.3) 

have been observed for nl 5 6 [l], 711 5 4 [2] and n3 5 5 [3]. It is then a theoretical challenge 
to compute exclusive jet cross sections with sufficient precision to compare with the data. 
Moreover these multijet final states often are a background to new physics. Therefore a good 
understanding of multijet final states is of the utmost importance. 

One immediate problem is that perturbative QCD predicts parton cross sections, while 
experimentally one observes only hadrons. As yet the hadronization process is only known 
phenomenologically and therefore, one cannot directly relate theory and experiment. Al- 
though there is an approximate correspondence between the underlying parton configuration 
and the hadronic structure of the event, one must always bear hadronization effects in mind 
when computing multiple jet cross sections at the parton level. 

The lowest order matrix elements for (l.l)-(1.3) h ave been computed for nl 5 5 [4, 5, 
6, 7, 8, 9, lo], 7~~ 5 4 [ll, 12, 13, 141 and n3 5 5 [15, 16, 12, 13, 171 by making use of 
helidty amplitudes [18], colour decompositions [7, 8, 191 and recursion relations [20, lo] to 
control the rapid increase in the number of contributing Feynman diagrams as the number 
of partons involved grows. The cross section is obtained by Monte Carlo integration over 
all the final state partons, and, at this order, the individual partons are identified as jets. 
The experimental acceptances and jet algorithms are then directly applied and, since the jet 
four-momenta are known, one can study any distribution such as the average transverse jet 
momentum or the two jet invariant mass. Comparisons with the data have proved reasonable, 
bearing in mind the fact that one is comparing a parton level calculation with hadronic data. 
In general, the lowest order matrix elements predict shapes of distributions reasonably well. 
However, due to the uncertainties related to the scale choice p at which we evaluate the 
strong coupling constant a.(~~), the overall normalisation is uncertain. 

In principle, the normalisation is better predicted once higher order QCD corrections are 
included since the scale dependence tends to cancel amongst the contributions at different 
order in the coupling constant. On the other hand, as higher order corrections are included, 
more and more partons are admitted into the final state. In contrast to the lowest order 
interpretation, the partons may be soft and/or collinear and cannot be directly identified as 
jets. The question then arises of how to define a jet cross section at higher order. Clearly 
this should be done in such a way that the parton shower is perturbatively reconstructed 
and each jet should contain more and more partons. By doing this, the average energy flow 
around the jet will be correctly modelled and the jet cross sections will be sensitive to the 
jet defining algorithm. 
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Since the jet is made up of partons, it is also necessary to define a parton in higher orders. 
A natural definition is to introduce a parton resolution criteria to define when a parton is 
resolved either as a single hard parton or as a cluster of partons. A practical consequence of 
this is that divergences associated with the soft and/or collinear partons can be isolated and 
analytically cancelled against the divergences from the virtual graphs.* The resolved parton 
matrix elements are thus finite and may be evaluated in the 4-dimensional limit. Similarly, 
the phase space is 4-dimensional but restricted by the parton resolution criteria. 

As in lowest order, one can then directly apply Monte Carlo methods to compute the 
jet cross section. For example, at next-to-leading order, the n-jet cross section receives 
contributions from the n-p&on and (n+l)-parton final states. In each case, the experimental 
jet algorithms can be applied to the parton momenta to obtain jet momenta, which may 
or may not be the result of clustering partons together. The next-to-leading order jet cross 
section is therefore fully differential. 

It is important to note that the parton resolution criteria is totally unrelated to any 
experimental jet definition. Furthermore, although the n-parton and (n + l)-parton cross 
sections depend logarithmically on the resolution criteria, the physical jet cross section does 
not. 

In section 2 we will define the exclusive jet cross sections to all orders in perturbation 
theory and discuss the physical picture behind the introduction of a parton resolution criteria. 
We use this parton resolution criteria to isolate the divergences which occur when one of 
the partons is either soft or collinear with one of the other partons [23] and is therefore 
unresolved (section 3). As we will show, these divergences have a universal structure and 
multiply the lowest order matrix elements in a non-trivial way. Although our scheme is 
applicable to partons in the initial state, for now we will focus on final state partons alone. 
In particular, we will isolate the singularities at leading order in the number of colours for, 

and, 

e+e--hqq+ng, (1.4) 

e+e- + qijqQ + (n - 2) g, (1.5) 

when one of the partons is unresolved. In section 4, we will show how to extract the most 
singular (l/c’) poles from the virtual one loop graphs contributing to (1.4) and (1.5). These 
poles arise when a virtual gluon within the loop becomes soft, and ultimately cancel against 
the real soft gluon contributions of section 2. As an explicit example, we will apply our 
results to e+e- -+ 2 jets at O(a,) and e+e- + 3 jets at O(u:) in section 5, where we show 
some numerical results from the next-to-leading order Monte Carlo. In particular, we will 
demonstrate that distributions of jet observable8 are independent of the parton resolution 
criteria. Finally, we summarize our results and indicate possible extensions in section 6. 
Helicity amplitudes for the relevant matrix elements are collected in the Appendix. 

*In dimensional regularisation [Zl, 221, which entails working in d = 4 - 2e dimensions, these divergences 
are associated with poles in l/r”‘. 
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2 Defining exclusive jet cross sections 

In order to calculate exclusive jet cross sections it is necessary to define the cross section 
up to all orders in perturbation theory. Of course we define only the perturbatively calculable 
part of the jet which is the parton shower. The subsquent hadronieation is not in the realm 
of perturb&iv= QCD. 

In lowest order, it is clear how to define the jet cross section since the whole parton 
shower is modelled by a single parton and we must therefore identify each outgoing parton 
as a jet and this implies that we must apply the jet defining cuts to each individual parton. 
In other words, there is only one parton in each jet cone which carries all the jet energy and 
momentum; the jet axis is thus identified with the parton four momentum. Any sensible 
experimental jet algorithm should reproduce the lowest order results in a global way. 

A simple example of an exclusive jet cross section, which we will use throughout the 
paper, is e+e- annihilation into three jets, for which the lowest order contribution is the 
order Q, process e+e- + qqg. One possible jet definition is a minimum mass cut such that 
the invariant mass of any jet pair is larger than an experimentally defined minimum, aNt, 

dj,j2 = (pj, + pjz)' > Jcuty P-1) 

where F’j< is the four momentum of jet i. This translates down to the parton level by 
demanding that the three possible invariant masses that can be constructed from the parton 
momenta are all larger than the minimum invariant mass sat. This more or less ensures 
that the subsequent hadronization of these partons will result in three distinct showers which 
are experimentally identified as jets. This means that the three jet cross section is given in 
lowest order by, 

dul(e+e- -+ 3 jets) = 0 dol(e+e- + qijg), 

where 0 contains the experimental jet definition for a three jet final state, 

(2.2) 

@ = B(Jqp - JdpyJ, - Jd)qJ, - Jd), (2.3) 

with s;j the invariant mass of partons i and j and dal(e+e- + qqg) is the 0(a,) leading 
order cross section for e+e- -+ qqg. The step function, 8(z), is 1 for z 2 0 and 0 otherwise. 

It is clear that it is necessary and desirable to extend the above scheme to include higher 
order corrections. This gives two distinct improvements. The first one stems from the fact 
that by increasing the order of perturbation theory the dependence on the scale choice ,u at 
which we evaluate a,($) is reduced. The second improvement results from the fact that a 
jet is a relatively “fat” object in phase space and may contain more than one parton. In 
fact, by increasing the order in c~,, we begin to reconstruct the parton shower. In other 
words, instead of modelling the shower by one hard parton we describe the shower by more 
partons. This will improve the predictive power of the calculation because it becomes more 
and more sensitive to the details of the jet finding algorithm. Eventually, adding all orders, 
this scheme describes the full parton shower. 

Let us first look at what happens in our example e+e- + 3 jets. We saw that in lowest 
order all the contributions to the jet cross section come from the parton process e+e- -+ qijg. 
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At next-to-leading order, there are two contributions. One contribution comes from the real 
diagrams (i.e. the tree level four parton processes, e+e- -+ qqgg and e+e- -+ qqqq [E, IS]). 
There are two distinct possibilities in which the four parton processes will not contribute 
to the lowest order four jet cross section but to the CY(a:) correction to the three jet cross 
section. First of all, we can have two almost collinear partons within one jet. Depending 
on the clustering algorithm they will be combined to reconstruct the jet axis and energy. 
The other possibility is a soft parton outside the jet cones. This will model the energy 
flow between the jets. Each of these contributions gives a divergent contribution the the 
three jet cross section. However, at the same order in a,, the virtual graphs also provide 
a divergent contribution which precisely cancels the divergences arising from the soft and 
collinear regions [16]. Finally, aft er coupling constant renormalisation, a finite three jet cross 
section is obtained. 

The above scheme has clear disadvantages since we must integrate out the collinear par- 
tons within a jet according to the clustering algorithm to obtain the contribution to a given 
three jet configuration. Also the soft radiation has to be integrated out. The resulting 0(a:) 
differential three jet cross section is then given by, 

dr2(e+e- --t 3 jets) = 0 [do[(e+e- + 3 partons) + / du,(e+e- -+ 4 partons)], (2.4) 

where, dor(e+e- -+ 3 partons) is the divergent virtual CY(cz:) cross section and dal(e+e- + 
4 partons) is the tree level e+e- + qijgg and e+e- -t qqqq cross section. The integration 
represents the projection of four parton phase space onto three jet phase space. In prac- 
tice, this is a very difficult and probably impossible calculation because of the severe phase 
space constraints on projecting the contributions from the four parton matrix elements onto 
the three jet phase space. So one is restricted to integrating out the final state without 
defining the jets (event shapes [16, 241). Alt ernatively, we could have chosen jet defining 
cuts and clustering algorithms and analytically computed the three jet cross section [25].’ 
However, often one wants to change the jet algorithm or try several of them and this would 
require redoing the calculation. Furthermore, the detector often has some difficult accep- 
tance cuts which can have serious effects on the measurements. It is impossible to include 
these constraints in the analytic calculation. 

At tree level we did not have these problems since the parton momentum was directly 
identified with the jet momentum. Therefore the jet definition and phase space integration 
can be performed numerically with the aid of Monte Carlo techniques. We want to do this 
for the higher order corrections as well. Therefore we will define higher order parton cross 
sections instead of jet cross sections. With these parton cross sections we can then (using 
the same Monte Carlo techniques as in lowest order) obtain the physically measurable jet 
cross sections. So, instead of interpreting the lowest order as a jet cross section, we view 
it as a parton cross section and generalize from that viewpoint. Of course the parton cross 
section has no physical meaning and only after defining the jets and performing the numerical 
integration to obtain the jet cross section do we obtain a physically meaningful result. 

In order to obtain a parton level higher order cross section, we have to define the concept 
of a parton in higher orders. To do this we will envision an experiment with a parton detector 

‘The next-to-leading order two jet cross section wsa first analytically computed by [26]. 
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(i.e. a detector which detects individual partons). This will guide us to the right concept 
of a higher order (or dressed) parton. Any detector has a finite resolution, and our parton 
detector can resolve two partons as individual partons if and only if the invariant mass of 
the parton pair is larger than the quantity ~,,,i,,. If the invariant mass of the pair of partons 
is smaller than a,,,;, the partons are unresolved and detected as a single parton. No matter 
how smdl we choose J,in, if we include all orders there will always be an infinite number 
of partons within this invariant mass. The quantum corrections will always render the final 
answer finite. Note that this resembles a jet, the shower is replaced by a single parton to 
model the behaviour of the unresolved parton shower. 

To see exactly how this works, let us return to our example of et=- -+ 3 jets (2.4). In this 
case, the four parton phase space splits up into a part where all four partons are resolved, 
one where only three are seen and one where only two are observed, 

du2(e+e- + 4 partons) 

= fl [B(sij - s,i,,) + B(s,;, - sij)] dul(e+e- + 4 partons) 
ii 

= 

[. 

z d(Jij - Join) + 5 ~(hin - akl) n fl(Jij - Knin) 
i,j#k,l 

+ c @(8,in - Sk!) 8(&i, - Sh) fl B(sij -&in) + ... daa(e+e- + 4 partons). 
kJ,m iJ#k 1 

(2.5) 

In this equation, the first term represents the contribution to the four parton cross section 
when all four partons are resolved, duf(e+e- + 4 partons). The second and third terms 
represent the divergent contributions when one of the partons is either collinear or soft 
respectively, daF(e+e- + 3 partons) and dul(e+e- + 3 partons) and only three partons 
are resolved. Partons i and j are collinear when 9;j < S,in, while parton i is soft when 
at least two invariants are unresolved, sij < s,i,, and s;k < +,,cn. The terms not shown 
are when two partons are unresolved, either two collinear pairs or two soft partons or one 
soft/one collinear pair, and therefore contribute to the U(af) two parton cross section. 

Since all we have done is to divide up the phase space in an arbitrary way, the jet cross 
section cannot depend on S,in. However taking the a,,,;,, + 0 limit simplifies the calculation 
considerably, since now we can neglect terms which disappear as s,i,, --t 0. Furthermore we 
can make use of collinear and soft factorisations of the matrix elements which are only valid 
in this approximation. 

By relabelling the hard partons and integrating out the unresolved partons, the full O(CY:) 
cross section for three resolved partons is given by, 

du,R(e+e- --t 3 partons) = n 8(J;j - a,;,) 
ii 

x [ du[(e+e- + 3 partons) + duF(e+e- + 3 partons) + dgt(e+e- + 3 partons)] 

(2.6) 
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Due to the Bloch-Nordsieck [27] and K’ moshita-Lee-Nauenberg [28] theorems, the soft and 
collinear poles cancel against the virtual contributions to yield a finite result after the usual 
coupling constant renormalisation. In fact, as we will show in the next sections, the di- 
vergences are sll proportional to the lowest order three parton cross section and may be 
explicitly isolated in d-dimensions and analytically cancelled, so that, 

daf(e+e- --* 3 partons) = n B(Jij - S,in) 
ii 

x [ QJ,P J , pII, Q,,) dn(=+=- + 3 partons) + F] , (2.7) 

where 3 is the finite virtual contribution. The dynamical factor K: multiplies the lowest 
order three parton cross section and depends on both s,in and the invariant masses of the 
hard partons. Combining (2.5) and (2.7) yields the full O(a:) three jet cross section, 

du2(efe- -+ 3 jets) = 0 
1 

d&e+=- + 3 partons) + 
J 

daf(e’e- + 4 partons) 1 , (2.8) 

where the three and four parton contributions are finite and may be evaluated in 4-dimensions. 
It is now straightforward to apply Monte Carlo techniques to numerically estimate the cross 
section - three and four parton events are generated and tested according to the experimen- 
tal jet definition 0 to see whether or not three physical jets are observed. Note that this 
approach is closely related to that developed in QED [29]. 

3 The divergent contribution from one ‘unresolved’ parton 

In the previous sections, we have used the concept of a parton resolution parameter to 
define finite resolved parton cross sections for efe- + II partons at leading and next-to- 
leading order. In this section, we will first isolate the soft and collinear divergences in 
the matrix elements and then use the parton resolution criteria to derive the divergent 
contribution to the cross section when one parton is unresolved. First of all, we must define 
some notation. 

For e+e- collisions at ,,6 = Q, the leading order cross section for n-jet production ac- 
cording to some experimental jet definition 0 contributes at O(a:-a) and has the form, 

dcn-2(ete- + n jets) = Q d&(e+e- ---t n partons). (3.1) 

The resolved parton cross section is given by, 

da:-,(e+e- -+ II. partons) = @J IA4(1,. . . ,n)l’dPS”(Q; 1,. . . ,n), (3.2) 

where the flux factor, + = 1/8Q’, contains the averaging factors over the initial particle 

spins, \M(l,. ,n)l’ are the leading order matrix elements for n-parton production while the 
resolved n-body phase space is is evaluated numerically in 4-dimensions with the constraint 
that all the partons are resolved according to the parton resolution parameter s,;,,, 

dPSR(Q; 1,. . . ,n) = 
1 

ne(aij - amin) dPS(Q; 1,. . . ,n), 
n,! nr n!! n,, ni’! i,j 

(3.3) 
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where the identical particle factor for ng resolved gluons and n,f (ni) resolved quarks (anti- 
quarks) with flavour f has been included. With this choice for the resolved phase space, we 
define the statistical factor that must be included in the matrix elements due to unresolved 
partons. 

As discussed in section 2, the next-to-leading order n-jet cross section receives contribu- 
tions from both the next-to-leading n-parton cross section and the lowest order (n+l)-psrton 
cross section, 

dan-I(ete- + n jets) = 0 
[ 

da:-,(e+e- ---t n partons) + /duf-,(e+e- -+ n + 1 partons)] , 

(3.4) 
where, 

dart-,(e+e- -9 7~ partons) = ip IM(1,. . ,n)l;dPS”(Q; 1,. ,n), 

d&(e+e- + n + 1 partons) = % lM(l,..., n + l)ladPSR(Q; 1,. . . ,n + 1). (3.5) 

The effective next-to-leading order matrix elements for n-parton production are defined by, 

\M(l,..., n)l:= IM(l,..., n)l;+IM(l,..., n)l;+IM(l,..., n$,, (3.6) 

where subscripts indicate the contributions from the unresolved soft or collinear portions of 

phase space or from the virtual contributions. We will now derive the structure of IMI’, and 

I4 

3.1 Tree level matrix elements 

The lowest order matrix element for (1.4) is given by, 

while for (1.5), 

M(Ql; 1, . . . ,n;i&) = $,(Ql; 1,. . . ,n;i&)V”, (3.7) 

M(QI,~&; Qs,% 1,. . . , n - 2) = ?p(Ql,g,; QJ,& 1,. . . , n - 2)V’. (3.8) 

In these expressions, V” represents the lepton current, while L?,, and FP are currents con- 
taining quarks and gluons. These currents depend on the momenta of the partons which we 
denotebyK,,..., If, for the outgoing gluons and 91, Q3 (glr 8,) for the outgoing quarks 
(antiquarks). Similarly, the gluon colour is denoted by al,. . . , a, while that of the quark is 
el,. . . , cd. Finally, the flavour of quark (antiquark) is denoted by fi. 

The current ,#?,, may be decomposed according to the colour structure [20, 30, 131, 

&,(QI; 1,. . .,n;Q,) = i=g”Pc~nj(Tal . . .T”“),,,S,(Q~; 1,. . . ,n;q,), (3.9) 
3. I 
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where S,,(Q1; 1,. . . , - n; &a) represents the colourless subamplitude where the gluons are emit- 
ted in an ordered way from the quark line. By summing over all permutations of gluon 
emission, all Feynman diagrams are accounted for. Note that the colour factor associated 
with each S,, is also ordered according to the colour index of the gluon. 

Similarly, the four quark current may be decomposed as, 

~~(Ql,~,;Qs,Q4;lr...rn-2) = ji,tQl,g,;Q~,~~;lr...,7~- 2) 

-~~(Q1,~ir;Qs,~g;l,...r~--) 
+&(QJ,~,;QI,~~; 1,. ,n - 2) 

-ji,(Qs,~l;Ql,~~;l,...,n-2), (3.10) 

where, 

n--l 
~~(Ql,~~;Qsr~~;l.....n-2)=i~~,~,, c c 

P(l,...,n-2) i=O 

x (T'=' 
1 

. ..Toi)CIC.(Toi+l...Ton-l)=,~~A~h(Q1; l,...,i;Q,IQs;i+l,...,n- 2;Q,) 

+h . ..Tai)C.C2(Tni+' . ..Ta--2),,c, El’fi(Q1;l ,..., i;qa1Qs;i+l,..., n-2;g,) 
I 

. 

(3.11) 

This amplitude represents Feynman diagrams where quarks Q1, Q, are coupled to the lepton 
current, while the QsQ, pair is attached via a virtual gluon. Other configurations are 
obtained by permuting the quarks and antiquarks as in (3.10). By summing over the colours 
of the internal gluon, two colour structures are generated. At leading order in the number 
of colours, quarks Q1 and &, (and Qs and &a) are colour connected and gluons 1,. . . ,i 
(i+ 1 , . . ,m - 2) are emitted in an ordered way from each coloured line respectively. This is 
represented by the ordered subamplitude A, f&. The second, colour suppressed term is QED- 
like and is described by Bffa where now Q1 and &a (and Q s and Gi,) are colour connected. 
Summing over i allows any number of gluons to couple to each coloured line, and, as before, 
all permutations of gluon emission are summed over. 

3.2 Squared matrix elements 

At leading order in the number of colours, the squared matrix elements for (1.4) are given 

by, 

n = 0 13pVp12 = e"NIS,V'I', 

n 2 1 IL?~v~I' = e' (q)" (y) [,,g ) /s,VH/' + o (-&)I . (3.12) 
I In 

Strictly speaking, at leading order in N, we should replace (N’ - 1)/N by N. However, it 
is an overall factor, and by including it, we keep all terms to U( l/N*). 



In the four quark process, (1.5), we may neglect the contribution from Btfi, (3.11), at 
leading order in the number of colours. The squared matrix elements are then given by, 

x p,,~:._,,~ [ I~~(Ql,~ili~3r~I)~~/2+ IX~(Q1,Q,i~3,~~)~~Iz+~ ($)I, 

(3.13) 

where, 

~;(~L~~,;Q~,~J = .A~f~(91;1,...,i;~,~~S;i+i,...r12-22;~51) 

+ Atf4(Qs;i + 1 ,..., n-2;gliQ1;1 ,..., i;?&). (3.14) 

Depending on the flavours of the quarks, not alI of these terms will contribute. For 
example, if pair QlG, has a different flavour from QsG,, then the second term in (3.13) 
vanishes according to the flavour 6 function in (3.11). It is interesting to note that within the 
function X, the order of gluon emission with respect to the quarks is fixed. This is enforced 
by the colour structure, and, as we will see later, determines the soft gluon behaviour of the 
four quark matrix elements. 

Note that, the two quark process (3.12) and the four quark process (3.13) generate the 
first two terms , u(l) and &) respectively, in the colour expansion of the e+e- + jets cross 
section. 

& = pyf’ 
[ 
J1) + +#) + 0 & ( >I 

We see that the terms neglected in the colour expansion of the two processes, (3.12) and 
(3.13), are of both 0(1/N’) in the jet cross section. Adding another term in the colour 
expansion involves contributions from the six quark process, e+e- + qtjqciqq + (n - 4)g, in 
addition to the U(l/Ns) terms of (3.12) and the 0(1/N) terms of (3.13). 

3.3 The soft behaviour of the matrix elements 

The soft gluon behaviour for an ordered subamplitude is very similar to the soft photon 
behaviour of QED amplitudes. In QED, th e soft photon couples to a charged fermion line, 
resulting in an eikonal factor multiplying the hard process (311. For example, for a process 
with n photons (with momenta Ki and polarisation vectors E;, i = 1,. . . ,n) coupled to 
a charged fermion pair (with momenta Q and P), the matrix element M(Q; 1,. . . ,n; P) 
factorises when photon n becomes soft, 

M(Q; 1 ,..., n;P) + e e(Q;n;P)M(Q;l,..., n- l;P), (3.16) 

where, 

e(Q; n; P) = E; -- 
Q?Kn 

(3.17) 
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The only Feynman diagrams that contribute in this limit are those where the soft photon 
couples to the external charged fermion lines. 

In QCD, the gluons are themselves coloured and there is not an overall factorisation of 
the matrix elements in the soft gluon limit. However, the ordered subamplitudes do exhibit 
a factorisation of the soft gluon singularities as in (3.16) [32, 331. This is because the partons 
are ordered and form well defined colour charge lines to which the soft gluon can couple [34]. 
As in the QED case, we obtain an eikonal factor (which may depend on hard gluon momenta) 
which contains the singular soft behaviour. Together with the factorisation of multiple soft 
gluon emission, this was proven in ref. 33 to which we refer the reader for a more detailed 
discussion. The soft gluon behaviour depends only on the momenta of the external colour 
charged lines to which the soft gluon couples, and is independent of the number and type of 
other partons in the process. Similarly, the soft factor is independent of whether or not any 
colour singlet particles such as electroweak bosom are participating in the hard scattering. 

We will now examine the soft gluon behaviour of processes (1.4) and (1.5). If we take 
gluon s soft, the colourless ordered subamplitude S,, (3.9) f ac t arises into an eikonal factor 
multiplying the ordered subamplitude for n gluon emission. Depending on the position of 
the soft gluon with respect to the hard partons, we find, 

S,(Ql; 1,. ,n,s;GJ --+ e(n;siGd S,(Ql; 1,. . . ,n;QJ, 

%(Ql; 1, . . . . m,s,m+l,..., n+l;G,) --t e(m;a;m+l)S,(Q1;1,..., n;Gs), 

S,(Ql; +l, . . ..n+l.Q,) + e(Ql;s;l)S,(Ql;l,...,n;~~,), (3.18) 

where e(a; s; b) is given by (3.17). It is important to note that in QCD, a and/or b may be 
either a hard gluon or a quark. Using these relations, the leading colour contribution to the 
squared matrix element for efe- -+ qij + (n + 1)g with one glum soft is, 

x Pl~,“l[d~(Qlili...in;h) /s,(Q,;l,...,n;U,,Vyla+,(~)], (3.19) 

where, 

w(Q1; 1,. . . ,n;g,) = 
( 1 

q [f~,l(~)+fiz(~)+...+f"~,(s)], (3.20) 

and where, 

f.*(s) = le(a;s; bf = *. 
hx.8.b 

(3.21) 

Note that compared to tree level (3.12), each term in the summation is now multiplied by a 
function JF which contains all the soft gluon singularities. Furthermore, the soft factor BF 
depends on the order of the hard parton momenta and is different for each gluon permutation. 
Clearly, the squared matrix elements do not exhibit an overall factorisation in the soft gluon 
limit. 

Since the gluons are identical, we could have chosen any of the (n + 1) gluons to be soft 
resulting in a factor of (n + 1). On the other hand, the identical particle factor (3.3) for the 
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remaining n gluons is l/n! rather than l/(n + I)!, so that the factors of (n + 1) cancel. The 
net result is that we can choose one of the gluons to be soft and ignore the identical particle 
factors of (7% + 1). 

For efe- * qqqq + (n - l)g, the derivation of the soft glum behaviour is completely 
analogous. We find, 

Ipp’~ -+ 2 (??)“(E$) 

x C ne [ ~F(~1ilr...,~;~ill~3i~+1,...,~--2;~)1) Ix;(Q~,Q,;Q~,Q~)v~~~ 
P(l,...,n-2) i=o 

, (3.22) 

where, because the order of glum emission with respect to the quarks within X is fixed, 

a~(&; 1, . . . . i;Q,IQs;i+l,..., n-2;GJ 

= s~(Qs;i+l,..., n-2;G,IQl;l,..., i;ZjJ 

= ($) [fQ,lb) + h(s) + . ..+ fiQ,(s) + fQ>i+lts) + . ..+ fn-,i&)] 

= SF(QI; 1,. . . , i;~,)+~~(Q3;i+I,...,n-22;~,). (3.23) 

As before, we obtain a structure where each term in the sum over glum permutations is 
tree level (3.13) multiplied by a permutation dependent function containing the soft glum 
singularities. 

3.4 The soft behaviour of phase space 

Having isolated the soft behaviour of the matrix elements, we need also to derive the soft 
behaviour of (n + 1)-particle phase space in d-dimensions. As we will show, the phase space 
factorises into an n-particle phase space multiplied by an integral over the soft momenta. In 
d-dimensions, n-particle p_hase space of a particle with mass fl decaying into n massless 
particles with momenta Pi and energy E; is given by, 

dPSd(Q;P,,...,Pn) = 
dd-‘j. 

,G (2*)d-‘2’E. 1 (2~)~b(~)( Q - Pl - . . . - P,,) 

= (2r)“-d(“-‘)dRd(Q; PI,. . . , P,). (3.24) 

For example, the two body phase space factor dR is given by, 

dRd(Q;Pl,Pz) = s~~~~d.&(~l~ - Q’), (3.25) 
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where we have transformed the integration variables to an integration over the two-particle 
invariant mass 311 and the (d - l)-dimensional orientation angle. 

Similarly, the three particle phase space is, 

dRd(Q;P~,Pz,Pa) = 

,;&(Q’)Y [s12s13s23] -$ ~wh&d(~~~ + 31s + axi - Q’). (3.26) 

Since we will take momentum Ps to be unresolved, we have integrated out the angular 
orientation of P3 with respect to the observed momenta PI and P2. We define the region 
when P3 is soft to be, 

8i3 c ~min < Q’ (i = 1,2), (3.27) 

where ~,,,i,, is the parton resolution parameter discussed in section 2. In this limit, we ignore 
momentum Ps in the numerator of (3.26) and the three body phase space factorises, 

where, 

dfid(Q;P~,Pz,Ps) + dRd(Q;P~,Pz) x ~&&‘I,P~,P~), (3.28) 

e 
s 

de&Lp2,p3) = ?r z 312 ’ dSlSdd,3 313623 
y 

2q9-?) [ 1 qhin - d13)8(S,in - 923). (3.29) 

Specialising to the case d = 4 - 2q the soft phase space factor is, 

dPs:,f,(Pl, pz, Pa) = (4sY dwdes ~138~3 -’ - 
16+r(l - E) 312 [ 1 812 B(%in - ~13)“(Smin - s23). (3.30) 

It is straightforward to genera&se this factorisation for (n + l)-particle phase space by 
splitting off a three body phase space, taking the soft limit and then recombining the resulting 
two body phase space. For example, when P. becomes soft, we have, 

~@(Q;PI ,..., P,-,,Po,S,P.) 
= dRd(Q;P~,...,P,-l,P~)dP~dRd(P~;P,,%,P,) 

--) dRd(Q;Pl,..., pn.+Prr)dP; dRd(PH;P.,%)d~~~fr(P.,PbrP,) 

= dRd(Q;P,,...,P,-~,P.,Ps)dR~~,,(P.,5,P.). (3.31) 

We can therefore always factor out a soft phase space factor associated with the unresolved 
gluon which regularizes matrix element singularities in 8.. and s,b. As can be seen in (3.20) 
and (3.23), the matrix elements never have overlapping divergences with more than two 
singular invariant masses. Therefore, by suitably factorising the soft phase space for each 
ordered subamplitude we obtain a completely regular cross section. 
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3.5 The soft behaviour of the cross section 

In the previous subsections, we have shown how the matrix elements and phase space 
factorise when one of the gluons become soft. We will now combine these results to obtain 
the soft behaviour of the cross section for e+e- + nq+ (n + 1)g and e+e- -+ qqqq+ (n - 1)g. 
Omitting the overall flux @ in the intermediate steps, the cross section contribution from a 
single ordered subamplitude, S,,, when gluon s is soft is, 

k,+l = ISP(Q1;l ,..., a,s,b ,... T~,)V+‘S~(Q; QI:& 1,. . ,a,b,s) 

= fab(s)dPS:,ft(@, b, 3) k. 1 (3.32) 

All of the dependence on the soft glum momenta has factorised and multiplies the cross 
section for a single ordered subamplitude for e’e- + nq + ng where now all the partons are 
resolved. We can now integrate out the soft gluon behaviour for this subamplitude using 
(3.21) and (3.30) and leaving all other phase space integrations over the resolved partons 
undone, 

[...I = /(?) fab(s)dPS:,,,,(a, b, 8) 

= (3.33) 

where p is an arbitrary scale introduced to keep the strong coupling constant, a, = gzpL-a’/4rr, 
dimensionless in d-dimensions. 

By choosing the correct soft phase space factor to integrate for each subamplitude, this 
procedure can be extended to include the full soft behaviour of the cross section, 

(3.34) 

Note that this factor is dependent on the gluon permutation and multiplies the cross section 
for each ordered subamplitude. At leading order in the number of colours, the effective 
squared matrix elements for e+e- -+ qij + ng with one unresolved soft gluon are therefore, 

IqJq; = 2 (Je)” (NY 1) 

x pc~,n)[SF(Q~i L...,n;Zid /S,(Q&. ,dP’la + 0 ($) 1. (3.35) 
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Similarly, the soft behaviour of the cross section for e+e- + qqqij + (n - 2)g is obt&ed 

by integrating out the soft gluon in (3.22) to yield, 

IpJq; = 2 (9)” (Nk; 1) 

X 
p(1,z-2) z 1 SF(Q1; lv 

. . ..i.~,IQ3;i+1,...,n--2;~1) I~~(Qlr~2;~3rQ4)~~Ia 

+ SF(QI;~, . . ..i.q,/Q~;i+l , . . . >n - %Ti,) lx;(Qd,; Q&)Vp12 

+u+, ( )I (3.36) 

where, 

SF(QI; 1, . . . . i;Q,lQs;i+l,..., n-2;G,) = !?~(Ql;l,..., i;ga)+S~(Qs;i+l ,..., n-2;i&). 
(3.37) 

3.6 The collinear behaviour of the matrix elements 

In addition to being singular in the soft gluon region, the matrix elements are also singular 
when partons a and b become collinear and cluster to form a new parton c such that, 

Pa + Pb = PC. (3.36) 

Unlike the soft gluon case, the matrix elements exhibit an overall factorisation in the collinear 
limit, 

IM(. . . ,a,b,. . .)I’ + E$‘“lM(. . . ,c,. . .)I’, (3.39) 

where the collinear factor, Egb”, is defined by (3.39) and is singular as a,* ---* 0. Removing 
the parton dependent colour factor, 

yields the colour reduced collinear factor, 

f 
8x6-e 

= +b-c(r). 
(1 

(3.40) 

(3.41) 

Note that in the gg h g case, a factor of l/2! is included because the gluons are identical. 
The function P .,.&c(z) is trivially related to the Altarelli-Parisi splitting function [35] in d- 

dimensions for partons a and b with momentum fraction z clustering to form parton c, such 
that, 

P. = ZP,, Pb = (1 - .)Pc. (3.42) 
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The Altarelli-Parisi splitting functions are symmetric under the exchanges a ct b, z tt (l-z), 

Pob-.e(z) = &+c(l - z), (3.43) 

and under charge conjugation, 

p&+e(z) = P.b-+c(t), (3.44) 

so that there are only three independent splitting functions, Pgg-,, Ppg+q and Pnrws. In 
defining these functions, there is some scheme dependence since one can treat the hard parton 
e in either d- or 4-dimensions. (The collinear partons are, of course, strictly d-dimensional 
to regulate the collinear singularities). The first scheme is the conventional prescription for 
QCD higher order corrections, while the second is the ‘t Hooft-Veltman scheme 1211. In the 
conventional scheme, the splitting functions are given by, 

PBdz) = 2 ( - 

1 + 2’ + (1 2)’ 1 ’ 2(1-z) 

( - - 

pw-‘l(t) = 2 1 + 21 E( 1 2)’ ) 1-z ’ 

- - 

PPdZ) = 2 ( 2 + (1 2)’ c ) . 
l--E (3.45) 

The ‘t Hooft-Veltman splitting functions differ from these by terms of order c, 

P#yJz, = Pgg-g(z) - 4rz(l - z), 

e%) = Pw-,(~)l 

Pg&) = (1- E)Ppq-g(Z) + E. (3.46) 

Since the collinear pole is 0(1/e), this will lead to different constant terms in the total cross 
section. 

The behaviour of the ordered subamplitudes for e+e- + qrj + (n + 1)g in the collinear 
limit is quite straightforward. First of all, there is only a singular contribution when the 
collinear partons are adjacent. For example, if gluons a and b are collinear and form gluon 
c then, 

/Sp(Q1; 1,. . ,a, b,. . .,n + l;i&)Vp’/l --+ f”b”/Sr(Q1; 1,. . . ,c,. . . ,n + l;i&)V’I*. (3.47) 

Similarly, there is a contribution when one of the gluons is collinear with either the quark 
or antiquark, 

IS,(q;g,l,...,n;~il)V’I~ --t fq”4’~S,(Q~;1,...,n;~,)V’1*, 

IS,(QI;l,...,n,g;Q)V’I’ -+ f”-G+JQ1; 1,. . . ,n;i&)V’f. (3.48) 

On the other hand, if the two collinear partons a and b are not adjacent in the ordered 
subamplitude, there is no singular contribution, 

IpA . . . ,a,. . . , b,. . .)V’I’ -+ 0. (3.49) 
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In particular, there is no contribution when the quark-antiquark pair is collinear. 

However, the four quark current, efe- -+ qqqq + (n - l)g, is singular when a flavour 
singlet quark-antiquark pair becomes collinear. For example, if Qs and gd are collinear and 
form gluon j, then, keeping only terms that are singular, a two quark current results, 

I~;(QJA;Q~~Q,)v~/~ + f4”*--j IS,,(Q1;1,..., i,j,i+l,..., TL-~;~~)VJ’]‘, 

I~,%Q~JA; Q~JA)v+~~ --t 0. (3.50) 

In this limit, the full matrix elements squared summed over the nf flavours of the collinear 
quark-antiquark pair yield a contribution to the two quark matrix elements at next-to-leading 
order in the number of colours of, 

x Fcg,nl [ (9) f4”“*--jIS,(Q1; 1,. . . ,dilP”~* + 0 ($) 1, (3.51) 

where the sum over i has been absorbed into the sum over gluon permutations which now 
extends up to n. 

Summing over all possible collinear combinations, we find that the leading and next-to- 
leading colour contribution to the full squared matrix element for the two quark final state 
when two partons are collinear is therefore, 

X p(~,“l[C~(Q~ilr.--,n;V~) IS,(Q&., d,)V’/’ + 0 ($) 1, (3.52) 

where, 

CF(&~,...,T~&) = [fW--Ql + flw” + . . . + fM4 + +j,nfPP-s] , (3.53) 

and, 
fjj = nt 

N’ 
(3.54) 

Note that this is exactly the same structure as that obtained in the soft gluon limit (3.19) and 
(3.20) and is similar to tree level (3.12), w h ere each term in the sum over gluon permutations 
is now multiplied by an ordered collinear factor cF containing all the collinear singularities. 

As in the soft gluon case, since all gluons are identical, we could have chosen any gluon to 
be collinear resulting in an additional factor of (n + 1). However, the identical particle factor 
(3.3) again cancels this factor and we can just treat one gluon as collinear. On the other 
hand, when two quarks become collinear the identical particle factor for gluons changes from 
l/(n - l)! to l/n! leading to the factor of n in (3.53). 
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For the four quark final state, (1.5), we find a very similar structure, 

JQq + 2 (q)” (N:;;‘) 

X F,,~-,,~ [ cF(Q1;lr...,i;Q11Q3;i+1,...,n-22;~~) I~,~(Q~J&;Q~,~w~I~ 
,,n ’ 

+ c~(Ql;l,..., i;Q,IQa;i + 1,. ,n - %G’,) Ix;(Q~,Q,;Q~,G&)v~~~ 

+o+, ( )I (3.55) 

with, 

CF(QI; 1,. . . , ~;QJQJ; i + 1 ,...,n-2;Q 

= cF(&;i + 1 ,..., n-2;Q,IQ1;1 ,..., i+l;G,) 

glN zz 
c-1 [ 

w-4, 
2 f + fnn-1 + . . . + f#4, + fi,ife-8 

+fns-4, + fm-if’ + . . . + f9d + sj(n - 7. - ;)fM--s 1 
= CF((&;~,..., i;~,)+CF(Q3;i+l,...,n-22;~,). (3.56) 

Note that the fit terms appearing in (3.56) are generated by the six quark process, e+e- + 
qqqqqq + (n - 3), when two of the quarks are collinear and form a gluon. The first (second) 
term proportional to tif is generated when the extra q4 pair is attached to the colour charged 
line joining Q: and Q, (Qs and ga). Strictly speaking, these terms are subleading in the 
number of colours and could be neglected (3.15). 

3.7 The collinear behaviour of phase space 

Having isolated the collinear singularities in the matrix elements, we now need to obtain 
the collinear behaviour of the (n + I)-particle phase space in d-dimensions. In particular, we 
will derive a phase space factorisation into an n-particle phase space and a collinear phase 
space factor which will regulate the collinear poles. We start with 3-particle phase space for 
Q + PI + P. + Pb where Pa and Pb will be collinear and form momenta Ps = P,, + 5, and 
integrate out the azimuthal angle between the plane containing P,, and 9 relative to Pz, 

dRd(C?; PI, pcz, 8) = 

,;&(Q')~ [.%+&?b1] ys k&kd%~(~~, + 8-b + 8bl - Q'). (3.57) 

In the collinear region defined by, 

Jab C bin << Q=, (3.56) 
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we can ignore terms of order S,b and find, 

+‘2 = 810 + sbt. (3.59) 

We therefore choose to define z by’, 

s1.2 = =11, Sbl = (1 - z)8,2. (3.60) 

In this limit, the three particle phase space factorises, 

dRd(Q;%Pa,Pb) -+ dRd(Q;Pl,Pz) x dR~o((P.,Pb;~), (3.61) 

where. 

d&(P., 4; z) = 2;&ds.ad+.a.(l - z)] ?‘+,i, - %b). (3.62) 
2 

Choosing d = 4 - 2~ yields the collinear phase space factor, 

dP&(P., Pb; 2) = ,,,$;1’ e)‘hdZ [%t& - ++min - &b). (3.63) 

The generalisation to (n + l)-particle phase space is again straightforward. Taking Pa + 
Pb + P,,, we have, 

dRd(4?;h ,..., pn-,,pa,pb) 
= dRd(Q;Pl ,..., P,.ma,PH)dP;dRd(PH;P,,-l,P.,Pb) 

-+ dRd(Q;P,,. ..,P,,-~,PH)~P&~R~(P~;P,,-~,P,,)~R~JP.,P~;z) 

= dRd(Q; PI,. . _ ,P,) dRk(P.,Pb; z). (3.64) 

As in the soft limit, we can always factor out a collinear phase space factor associated with 
the unresolved two parton cluster which regulates the matrix element singularities in 9-b 
(3.41) and z (3.45). 

3.8 The collinear behaviour of the cross section 

In order to determine the collinear contribution to the cross section, we must integrate 
out the unresolved parton so that the collinear region does not overlap with the soft region; 
we must match the collinear region precisely on to the soft region so that there is no double 
counting and that no singular region is omitted. In other words, we must ensure that only 
one 9;j < a,,,;,, and that all other invariant masses are larger than s,in. In general, this 
is a very complicated constraint, however, using the ordered subamplitudes resolves this 
problem. 

If we consider the clustering of partons a and b, we must ensure that the resulting parton 
e is resolved from the other partons in the event. This requirement will avoid the soft region 

‘Note that in the exact collinear limit, this leads to the usual definition of 3, (3.42). 
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and determine the upper and lower integration boundary for z. To see how this works, let 
us consider a general ordered subamplitude which has the structure, 

(S,(...,=-l,=,b,b+l,...,d ,... )V’/l-J (1 Tlo8~b8bb+l. (3.65) 

If the collinear pole is given by 8.6 < a,,,;-, then we can fall into the soft region when either 
S.-L, < s,-,,i,, (corresponding to parton a being soft) or swfl < ~,,,i,, (parton b soft). The 
collinear region is therefore determined by, 

~a-10 = =.-1c > hnin, 

%A+1 = (1 - Z).%b+l > S,;,, 

where we have used P, = zP, and 4 = (1 - z)Pc. In other words, 

(3.66) 

%nin Jnlin -=q<z<l-%~=l--. 
Sa-lc hbtl 

(3.67) 

With this ordering dependent boundary, we neatly match onto the soft region. On the other 
hand, this does not force c to be resolved from other non-neighbouring partons, such as 
parton d. However, the ordered subamplitude does not contain poles in BC~ and the relative 
error induced by such ‘accidental’ overlaps is of order s,,,in and therefore negligible. 

As in the soft gluon case, (3.32), the contribution to the cross section at leading order in 
the number of colours from a single ordered subamplitude in the collinear limit is, 

k+l = %h)dPS:oi(P., 8; 2) 1 k, (3.68) 

where the z integration boundary, q < 2 < 1 - zz, has been made explicit. All of the 
dependence on the unresolved collinear partons has been factorised and multiplies the cross 
section for a single ordered subamplitude where now all the partons are resolved. We can 
now integrate out the collinear behaviour for this subamplitude using (3.41) and (3.63) and 
leave all other phase space integrations over the resolved partons undone, 

[,..I = / ($) f”b”(Z1,+PS&(P., %; Z) 

= dz [z(l - z)]-’ P.b-c(Z)] 

(3.69) 

In the conventional scheme, the integrals over the splitting functions, I, are given by, 

L~(% 22) = 
3(1 - ~)(4 - 3E) ryl -c) 

2c(3 - 2~) r(2 - 2c) 

= %~'+:r'-2)-~+(-~+~)e+u(rl), 
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--c 
&+,(Zl,.,) = - - 

(1 - E)(4 - e) I=(1 - C) 

= ;y) “+ ($$+o(c2), 

1 - E 
Lm+-,(a,z2) = - 

rQ(l - 6) 

3 - 2E I?(2 - 2c) 

z ; + ; + O(2), 

where, since tI, .a1 CC +,,;,, we have neglected terms of 0( tl and 0(-z*). Note that I is finite ) 
aSC-+O. 

These integrals Z are directly related to the Altarelli-Parisi splitting functions, so we also 
have the relations, 

44~1,4 = 4,-,(~2,4, 
&.,(~1,4 = Llq+-s(%,4, (3.71) 

and, 

k?.q(~1,-22) = Ll,-,(%,4, 

Zgq-+l-4(~1,~2) = &+q(%,Z2). (3.72) 

The divergences of the splitting functions are reflected in the behaviour of the integrals 
with respect to z1 and 21. For example, the 49 + q splitting function is finite when the 
glum carries off all of the momentum (z --t 0) but diverges when the glum is soft (z --t 1). 
Therefore, Zqn-,,( zl,tl) depends logarithmically on z2 but not on ~1. Similarly, the 99 -+ 9 
integral depends on both x1 and z1 while that for qn -+ 9 depends on neither. 

By choosing the correct collinear phase space factor to integrate for each subamplitude, 
this can be extended to include the full collinear behaviour of the cross section, 

+2(: I ;,, [12(n + 1) - (9n + 11+ 27+)c+ 2cq ,‘;;1--2:; 1. (3.73) 

20 



In this equation, the trivial z integration boundaries have been replaced by 0. Note that 
this factor is dependent on the glum permutation and multiplies the cross section for each 
ordered subamplitude. The effective squared matrix elements for e+e- + qq + ng with an 
unresolved collinear pair are therefore, 

X p(~,~,[C~(Q~;l,...,~;ol / ) S,(Q1;1,...,n;~s)V’j*+O ($) 1. (3.74) 

Similarly, the effective squared matrix elements for e’e- + qqqq + (n - 2)g with an 
unresolved collinear pair are given by, 

X p,l~-,,~ 
IIn i 

[ CF(QI; 1,. rCg,IQs; 

+ CF(%; 1,. . . ,i;Gi,IQs; 

+o$, ( )I 

E + 1,. . . ,n- 2;72,) l$(Q&; Q&)VI’1’ 

i+ l,...,n-22;Q,) ~x;(Q~,QQ~,~~)v~I' 

(3.75) 

where, 

c,(Q~;l,..., ;;~,lQs;i+l,... ,~~-2;q,) = C,(Ql;l,..., i;Q4)+C~(Qs;i+l,..., n-2;G’,). 
(3.76) 

3.8 The full contribution from unresolved phase space 

We may now combine the results of the previous sections to calculate the full contribution 
from efe- -+ qp + ng with one unresolved parton. The effective matrix elements may be 
written, 

Ipq; + IQq; 

c [R(Qd 
P(l,...,“) 

2 (!y)” (N>l) 

1...1 n;Gil) ls,.(Q~; 1,. . . ,d,)V’j’ +CJ (3.77) 

where R(Q,; 1, . . . ,n;Q,) is ordered and contains all the divergences associated with the 
unresolved parton and is given by the sum of the ordered soft and collinear factors, (3.34) 
and (3.73), 

R(QI; 1,. . ,n;Gs) = ~~(Q~;~r...r~;~~)+~~(Q~;~r...r~;~~). (3.78) 
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Combining the results for SF and CF, we have, 

R(Q,; 1, . . ..n.i&) = %N 
( > 

1 
- 
2x r(1 - E) 

+2(: I ;,, [12(n + 1) - (9n + 11 + 27Gif)E + 24 ;;;e-2;;] 

= 
(g) qlle) [~(~(F$)‘-lOg’(~)} 

63 + 67n - 10nfif +yn + 1) - 
18 3 1 

a.nb,, 1 
f- 

4irp2 e 

E r(i - c) S,in + o(E)T c-1 
(3.79) 

where the sum is over the colour charged lines, i.e. ;j = Qll, 12,. . . , nGz. The one-loop 
QCD beta function ba is given by, 

bo = 
11N - 2nf 

12?r . 
(3.80) 

It is important to note that terms of order s,;,, have been neglected so that this equation is 
only valid in the small s,;, limit. 

An analogous result holds for the four quark process (1.5) when one of the partons is 
unresolved. Explicitly we find, 

~pp$ + Ipy$ = 2 (q)” (“L; 1) 

x C ? [ R(Q1;1,...,i;~~l~2;i+1,...,~--2;~2) I.QQ~,Q,;Q~,~,)v~I~ 
P(l.....n-2) i=O 

+ R(Ql;L . . . . i;g,lQ~;i + l,..., n - 2;g,) I~;(Qda; Qz,~JV“~~ 

(3.81) 

where, because of (3.23) and (3.56), 

R(Q1; 1, . . . . i;G4,Q3;i+l ,..., n-2;i&)= R(Q,;l,..., i;i&)+R(Qs;i+l,..., n-2;?&). 
(3.82) 

Once these phase space contributions are combined with the virtual corrections, and 
coupling constant renormalisation is performed, all the poles in E must cancel. On the 
other hand, the virtual corrections cannot give any contribution proportional to s,,,;- and 

R(QI; 1, - . . . ,n; Q1) therefore contains the full dependence on the parton resolution parameter 

%nin~ 
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4 Virtual Contributions 

At leading order in the number of colours, the complete next-to-leading order cross section 
is obtained by adding the one-loop virtual contribution to the single parton unresolved cross 
section of the previous section. In this section, we will discuss the process efe- -+ qij + ng 

in detail, while we will only make a few remarks on the four quark process. 

The virtual graphs for e+e- + qtj + ng are formed by attaching an internal glum (with 
colour z) in all possible permutations to the tree level amplitude (3.9) which generates colour 
structures of the form, (P . T” . . . Tam.. .T” . . T”-)C,,~ . When the colour matrices T” 
are adjacent (which corresponds to emission and absorption of the virtual glum on the same 
colour charged line), this gives an additional factor of (Ns - 1) /2N relative to tree level. 
On the other hand, if colour matrices associated with the hard partons are inserted between 
the internal colour matrices, only terms subleading in the number of colours are generated. 
Keeping only the leading N contribution yields the next-to-leading order current 3;) which 
may be decomposed according to the colour structure as in (3.9), 

L?F)(Q~; 1,. ,n;Gs) = ieg” 

x ,(z ,[(T”‘...T’-).,.,st”(Q~;l,...,n;v,,+o(~)]. (4.1) 
I P 

The next-to-leading order ordered subcurrent Sp) may be written as a part proportional to 
the lowest order current, S,, containing all of the virtual soft and collinear singularities, and 

-(I) a part that is finite as E + 0 and can have a different structure from tree level, S, , 

s,?)(Q~;l,..., n;Q,) = fv s,(Q~;l,..., n;Q,)+S;)(Qd I..., n;Q,). (4.2) 

It should be noted that there is always some arbitrarin& between the assignment of the 
finite pieces between the two terms. 

By multiplying the one-loop contribution by the lowest order matrix element, we obtain 
the virtual next-to-leading order effective matrix elements at leading order in the number of 
&ours, 

where, 

F(Q,;L.. .,n;?&)= (~)2ae[(s,(Q~;l,...,n;V1)V’)(St”(Ql;l,...,n;V,)VV)+], 

(4.4) 

23 



is finite. The ordered virtual factor, V, has the structure, 

v(Q~;l,...,n;Qz) = 2 Re (fv) 

= ( > .a,N w + 4w - 4 
2n r(l -2E) [ 

vQ,, + vl, + 
-+vn& (4.5) 

where V.b represents the divergent virtual contribution which arises when the internal glum 
is attached to the colour charged line joining hard partons a and b. V., will, of course, 
contain precisely the right soft and collinear singularities to cancel the contributions Corn 
the single parton unresolved cross section. 

Let us first consider the soft contributions and return to our QED example of n photons 
attached to a charged fermion line (section (3.3)). Th e one-loop corrections to this process *re 
obtained by the emission and subsequent reabsorption of a photon from the charged ferrnion 
line. In the soft limit, off-shell photon emission is characterised by the gauge invariant factor, 

(4.6) 

where L,, is the momentum of the soft off-shell photon [31]. Note that in the on-shell limit, 
this reduces to the eikonal factor of (3.17). As in the on-shell photon case, only virtual soft 
photon radiation from external lines contributes to the pole in l/ez. 

Since the emission of a soft photon cannot change the correlation between the hard 
particles, the soft virtual contribution is proportional to tree level, 

M!$Q. 1 . , , ..,n;P) = f& M(Q;l,..., n;P), (4.7) 

where, 

f QED - ; 
aoft _ 

/ 
- ($&(Q, P; W”‘Ev(Q, P; -4. (4.8) 

The factor l/2 is due to Bose statistics of the emitted/absorbed photon. In principle there 
is some dependence on the loop momenta remaining in M, however, this disappears in the 
soft photon limit. In the light cone gauge, the internal photon propagator, P’“, is given by, 

pw = ; 

( 

gw _ WLb+;b’) , 

1 

where b, is a light-like auxiliary vector. Since E,, is gauge invariant, the gauge dependent 
terms cancel trivially and we only need to keep the terms proportional to gp”. 

Only the real part of fg& contributes and we define the soft virtual contributions Vrpf’ 
to be only the terms associated with the pole of order l/t”. To be explicit, 

a.2 (fgk) = (E) “‘,‘,r”‘$ E, [v@ - (Z)’ 2f(ly 2c,] ) (4.10) 
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where the soft factor depends only on the invariant mass of the electron-positron pair, sQp 
and the explicit l/e terms within the square bracket by definition contribute to the collinear 
virtual part and have to combined with the other virtual collinear contributions. The soft 
factor is given by, 

V#oft _ Re(-1)’ 47r$ l 

QP - - $ (&J =-~(~)@+~+w. (4.11) 

As in the on-shell case, QCD has a completely analogous behaviour to QED, where now 
each colour charged line (containing either gluons or quarks) yields precisely the same virtual 
soft contribution, 

vp;ft = v;ft = v-f = v;;“. (4.12) 

The ordered virtual factor (4.5) is therefore given by, 

V(QI; 1, . . ..?a) = 

where the sum is over the (n + 1) colour connected pairs, Q1l, 12,. . . , ng,. The remaining 
virtual collinear divergences, Vcoi, are of order l/c and must contain precisely the right single 
poles in c to cancel those from the unresolved portion of phase space. 

At next-to-leading order, the unrenormalised full squared matrix elements for efe- --t 
qp + ng are obtained by summing the real soft and collinear parts, (3.79), with the virtual 
contribution, (4.3), 

x p(~,~)~(~~;l,...,n;~~) Is,(~~;1,...,“;~~)~‘1~+7(~~;1,...,n;~~) 

++ , ( )I 
(4.14) 

which has the structure of tree-level, (3.12), where each subamplitude is now multiplied 
by a next-to-leading order ordered dynamical X-factor and added to a finite non-tree-level 
ordered structure .F determined by the one-loop graphs. Using the relationship, 

r(l + +a(1 - e) = 
r(i - 2~) r(l: e) + (743 
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we find the unrenormalised next-to-leading order dynamical K-factor to be given by, 

~(QI; 1,. . . ,n;g,)= R(Q1;1,...,n;~,)tV(Q,;l,...,n;~',) 
%N 

6) 
1 = 

2T r(l - c) 

x [-~~~gz~(~)+““n~“+v~t~(~)L+63+6~;g10-1] 

a,b,,n I 
+- 

4np= < 

(-) E qi - E) J,in + O(E) + qB,iJ. (4.16) 

Although the virtual collinear factors are undetermined, they must satisfy the relationship, 

VcO’ = -i + finite pieces, (4.17) 

which is necessary to ensure that all the collinear poles cancel. The finite pieces may be 
either single logarithms or constants. Note that the divergent contribution is independent 
of the number of gluons involved in the process. Furthermore, the -3/2e pole is associated 
with the fact that we take the fermions massless and is present in both QED* and QCD. 

By calculating the virtual corrections for e+e- + qq and e+e- + qq $ g we can make a 
“natural” choice of the finite pieces in (4.17). First of all we rewrite the collinear factor to 
accommodate the ordered gluon structure of the subamplitudes, 

vd = C P$(Sij) + C”, (4.18) 
ij 

where C”’ is an arbitrary constant and the sum is over the ordered pairs. 

Explicit calculation of the virtual corrections to e+e- + qtj using the methods of [36] 
yields, 

V(Ql;g,) = (g) "',;r'fl:,-" (-i(E)+; (;“z$)‘-4) +0(e), 
I, 

F(QI;Q,) = 0, (4.19) 

with the “natural” choice of the finite contribution equal to zero. Comparing this expression 
with (4.13) leads us to make the following choice for VCd, 

v*y1(6qi2j,) = -- - 
3 47rp= e _ 4 

( 2E %lG ) ’ 
C’d = 0 

so that, 

V(Q,;G,) = (s) r(l ;(;)~‘;:,- ‘) (J’$f’(sq,G,) + V9’4d(sq,iq2.). (4.21) 

*In QED, the K-tktor is given by (4.16) with n = 0 and the replacement a,N/Z -+ ~1. 
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Combining this with the resolved phase space factor R(Q,;Q,) ((3.79) with 7~ = 0) yields 
the two-quark K-factor, 

n(Q1;i&j3) = RtQ~;i?z’,) + V(Ql;g,) 

= (g) [-log2 (2) +; + ilog (2) - ;] + U(E) + O(&&). 

(4.22) 

Similarly, calculation of the virtual corrections to e+e- ---t qq + g at leading order in the 
number of colours, leads to the following expression, 

V(Q1; l;i&) = (g) r(l ,:;)r’;;,- ‘) 

(4.23) 

An expression for the finite non-tree level terms F(Q1; l;Q1) is given in Appendix A. Again, 
comparing with (4.13) leads us to the “natural” choice, 

%3s) = yg(8) = ;I$(~) = -; !g c _ 2, ( ) 
c=d = 0 (4.24) 

such that, 

V(Q1; l;i&) = (g) r(l ,‘,;)“;$- ‘) (vdb”“( %I1 + IIp;p’hl) + y$%l& + q’(s,iJ,)) . ) 

(4.25) 
Adding the resolved phase space factor R(Q1; l;Gs) ((3.79) with n = 1) gives the dynamical 
K-factor for e+e- -+ qg + g, 

~(QI; l;qz) = R(Ql; l;i&) + V(Q1; 1;82) 

do 1 +- 47rp2 c 

( ) c l?(l - c) S,in + O(e) + qsmin). (4.26) 

We see that the only remaining poles in (4.26) are ultraviolet in origin, and are pro- 
portional to the one-loop QCD beta function 60, and are therefore associated with coupling 
constant renormalisation. In the MS scheme [37], the coupling constant is redefined in terms 
of the coupling constant evaluated at the renormalisation scale p by, 

a, = a,(p”) 
( 

1 - a.(C)bs) , 
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where, 
1 1 (4*)’ 
-z = ’ + l”g(4a) -78 + O(E), Er(l-e) E 

(4.28) 

and 7~ is the Euler constant. At next-to-leading order, the strong coupling constant at scale 
p is defined relative to the fundamental QCD scale AZ to be, 

a.(2) = 
1 

bolog (PIAk) 

1 _ bl log ((log (W&)) 

% log (/Wb) ’ 
(4.29) 

with, 
b 

1 
= 34Nz - 13Nn, + 3nllN 

40n’ 
(4.30) 

It is now straightforward to generalize the X-factor of (4.26) to include more gluons. By 
inspection of (4.16), we see that V,‘,” cannot be singular as e + 0. Therefore, by choosing 
C”’ = 0 and V,;p'(s) = 0 we can uniquely define V-l. Any additional finite terms are thereby 
assigned to 7, and the dynamical K-factor (4.16) is fully defined. The only remaining poles 
are the ultraviolet poles proportional to b s. Since the lowest order squared matrix element 
(3.12) is proportional to a:, the coupling constant redefinition (4.27) precisely cancels the 
ultraviolet poles in (4.16). The finite, renormalised X-factor for any number of gluons is 
thus, 

+ cr,($)boonlog + O(e) + q&h). 

As might be expected from our earlier discussion of the soft and collinear limits of the real 
graphs, an analogous result holds for the four quark process (1.5). After coupling constant 
renormalisation, 

x ..,i;Q41Q3;i + I,...,72 - 2;QJ Ix;(Q~,&Q~,Q~)v*I~ 

+ T(Ql;l,..., i;G,jQs;i+l,..., n--2;&) 

+ x(Q,;l,. ..,ii~jllQs;i + L...,n - ‘&g,) Ix;(Q~>~ai,;Qs,Gz)V~l~ 

+ T(QI; 1, . . . . i;q,IQs;i+l,..., n-2;Q,)+CI $ ( )I , (4.32) 
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where the dynamical XC-factor is now given by a sum of two two-quark K-factors, 

K(Q,; 1,. . . , i;q,iQs;i+l ,..., n-2;g,) =K(Ql;l,..., i;G,)+K(Qs;i+l,..., n-2;Gs). 
(4.33) 

It is important to note that the coefficient of of ho/F in R(Q1; 1,. . . ,i;g,IQs;a + 1,. . . ,n - 
2;Q,) is equal to the number of final state gluons which is now (n - 2). The coupling 
constant renormalisation, however, generates a counter term of -nbolc, making K apparently 
divergent. This is not, of course, the case since, unlike the two-quark virtual corrections, the 
four-quark V(Ql;l,..., i;Q,/Qz;i + l,..., 7~ - 2;Q,) contains additional ultraviolet poles, 
proportional to 260/E, which render the cross section finite. Any additional finite terms 
associated with the virtual ultraviolet poles are reassigned to 3. 

5 Numerical results 

With the methods described in the previous sections, and using the matrix elements 
given in the Appendix, we can construct a Monte Carlo program which generates resolved 
n-parton and (n + l)-parton events with their corresponding (finite, but not necessarily 
positive) weights. 

By themselves these resolved parton cross sections have no physical meaning and will 
depend strongly on our theoretical parton resolution parameter, s,.,,i,,. However for physical 
next-to-leading order n-jet cross sections, both the n-parton and the (n + l)-parton cross 
sections contribute and are combined according to the jet cluster algorithm, rendering the 
resulting n-jet cross section independent of B,;,. 

The cancellation of the s,;, dependence is performed numerically by the Monte Carlo. 
Although the logarithmic s,;,, dependence of the n-parton cross section is explicitly shown 
in EC, the counter terms from the (n + I)-parton contribution are determined by the Monte 
Carlo evaluation. For this reason we do not want to take s,,,i,, too small so that we can 
avoid large numerical cancellations. On the other hand choosing s,;, too large introduces a 
systematic error due to the fact that we use the collinear and soft approximations to obtain 
factorisation and are forced to neglect term of order a,,,;,,. 

The Monte Carlo written according to the above philosophy allows one to keep all the 
correlations of the event and allows for an easy numerical implementation of the jet algorithm, 
detector acceptance and any additional cuts. In the next two subsections we will discuss two 
explicit examples of next-to-leading order jet production, efe- -t 2 jets and e+e- + 3 jets. 
For the purposes of illustration, the beam energy is always chosen to be the Z-boson mass, 
Mz, and no QED initial state radiation is included. Furthermore, the factorisation scale p at 
which the strong coupling constant, a,(~~), is evaluated is chosen to be Mz unless otherwise 
stated. 

In most of the explicit examples we will choose a limited number of events generated 
in the Monte Carlo in order to show the interplay between the statistical and systematic 
errors. For a more phenomenologically orientated study one can easily increase the number 
of events, thereby reducing the error in the Monte Carlo to the desired value. 

29 



1- , ,,,,,, , ,,1,,, , ,,,,,, 

yd - 0.10 (4 _ 

.ss - 

3 
.sa - I 

I’ - 
sr f 

II 
T 

.94 p- d-+ 

.92 - 

I1111111 8 I1111111 I 1111111 
,001 ,003 .01 .03 1 .3 1 

Y*/Ym 

.4 

":r 

ya = 0.01 (4 

.38 

.38 
2 

b-4 

1 frr 
.34 

I 

32 

.3 L 
.OOl ,003 .01 .03 .I .3 f 

Ya / Ya* 

.a3 - ‘“” f I1111111 I I I111111 I I ‘I1IU 
,001 ,001 .003 .Ol .03 .I .003 .Ol .03 .I .3 .3 1 1 

Yz.9 / Ye* Yz.9 / Ye* 

50 50 8 8 I """I I """I I “““I I “““I 3 3 I 1’1”11 I 1'1"' 

Ymh = Y..JlO Ymh = Y..JlO (4 - (4 - 

40 

h h 30- 30- 

2 2 

1 1 . . 
b b 20 - 

10 - 

0 I I I 
,001 ,001 ,003 ,003 .Ol .03 .l .Ol .03 .l .3 .3 1 1 

Y.-d 

II ““‘I I I”“‘1 ’ I I - 

.74 - y& - 0.03 (b)- 

T 1 1 1, Tr, 

fi ‘ff 

#3 

Fig. 1. The next-to-leading order K-factor, K2 = ONLO/ uLo, for two jet production as a function 

of y,;,/y,t for (a) ymt = 0.10, (b) Y,, = 0.03 and (c) yml = 0.01 with statistical errors. The 
analytic results of (5.3) are shown as solid lines. 
Fig. Id shows the y,, dependence of the next-to-leading order two jet cross section for 
y,,,;,/~,~ = 0.1 with statistical errors. The analytic result of (5.3) is shown as a solid line while 

the lowest order cross section is shown dotted. 



EO-scheme 1 A 
P-scheme A-’ 1 

energy resealing factor a momentum resealing factor p 
E-scheme / 1 1 

Table 1. Values for the scheme dependent recombination factors of (5.2) and A = 
#HT. 

To indicate the number of events used to estimate the n-jet cross section, we will use the 
notation z x (yr + ys) which means I x yr n-parton events and z x ys (n + I)-parton events 
arc evaluated. In other words, the n-jet cross section is evaluated z times with yr +ys terms. 
The cross section is taken to be the average of the + results, while the error is estimated by 
their standard deviation.’ 

In order to illustrate the sensitivity of next-to-leading order jet cross sections on the jet 
algorithm (and the adaptability of the Monte Carlo approach), we will use several, more or 
less standardized, jet definitions which arc the E, EO and P-schemes. For each scheme, if 
the smallest invariant mass of any pair of all possible final state momenta is smaller than 
an experimental value s,~, the corresponding two momenta are replaced by a recombined 
momentum, thus reducing the number of momenta in the final state by one. This procedure 
is repeated until all invariant masses are larger than sCUt, the remaining momenta are the 
jet axis momenta. The difference between the schemes is in how the parton (or hadron) 
momenta are recombined to give a composite momentum. The recombined momentum is 
given by, 

where, 

PA, = (Em, kc) , (5.1) 

Em. = a ( EI + El) , 
tie. = P (6 + F2) 1 (5.2) 

and where (I and p are scheme dependent and arc given in Table 1. As shown in Table 1, 
the E-scheme conserves energy-momentum, while the EO-scheme conserves only energy and 
the P-scheme conserves only momentum. On the other hand, only in the E-scheme is the 
recombined momentum not massless. 

5.1 Monte Carlo results for e+e- -+ 2 jets 

We will now discuss the results from the Monte Carlo approach to the two jet production 
at next-to-leading order. The order a, two jet cross section receives contributions from two 
sources. One is the resolved two parton cross section, while the other contribution stems from 
the lowest order resolved three parton cross section where two of the partons arc clustered 
together to form the jet axis according to the chosen jet algorithm. 

‘For differential cross sections, the estimate and error are given on a bin by bin basis. 
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Fig. 2. The transverse energy distribution at next-to-leading order in two jet production for the 
hardest ET-jet (open points) and the softest ET-jet (solid points) for (a) the E/EO-schemes and 
(b) the P-scheme with statistical errors. At lowest order the hardest and softest ET distributions 
coincide and are shown as a histogram. 

Fig. 2c shows the angular distribution of the jet with respect to the incoming electron at leading 
(histogram) and next-to-leading (points with statistical errors) order. 



Because of the low parton multiplicity in the final state, some analytic results can be 
obtained for the two jet cross section as a function of the jet defining cut 9-t. This gives us 
the opportunity to compare the performance of the Monte Carlo with the analytic result. 

The analytic two jet cross section at order Q. for any of the jet schemes, is given by, 

g2 j&(Ycut) = CO X 
t 

1 + &C&(/L’) N2; l x [B(Yat - 5) + 8(; - Y,t) I(y,,)]}. (5.3) 

If Ycur = Gut /Q’ 2 a, it is no longer possible to generate three parton events due to momen- 
tum conservation and therefore the two jet cross section is equal to the total hadronic order 
a, cross section. The Born cross section, gs, is the lowest order contribution to the hadronic 
cross section. The function I(yNt) is given by, 

I(&,) = 4 X 1 G - k - 2 Ii2 (1%) -log2(1:yL) 

-i(l- 2Y,*)log 1 -“;; 
( ) cut 

+ 3Ycu* + iYk, , 1 
where the dilogarithm function, Lis, is defined by, 

Lis(z) = -J,’ log(L- *) dz. 

Note that in taking the limit ycyt --t ymin = s,in/Qs, and thus ignoring terms of order y,,,;,,, 
we recover the resolved two parton cross section (4.22). Furthermore, I(f) = 1, so that 
the two jet cross section is continous over the ysut = 5 r boundary. The total two jet cross 
section is independent of the chosen jet scheme at O(o,). H owever, specific distributions 
may exhibit scheme dependence. 

As discussed earlier, s,;, is an arbitrary parameter and any physically measurable quan- 
tity should not depend on it. We therefore show the s,i,, dependence of the Monte Carlo 
estimate of the two jet cross section in figs. la-lc where the ratio K2 = 9 jet(Y~t)/Uo is 

shown as a function of ym;,,/ycut for different values of the experimental cut yNt. In order 
to show the interplay between the statistical and systematic errors clearly, the cross section 
was evaluated with a limited number of events, 10 x (10,000 + 10,000). For comparison, the 
analytic result (5.3) is shown as a solid line while the Born cross section is shown dotted. 

In the Monte Carlo we cannot take the limit y~in/ycut t 0 due to the logarithmic ymin 
cancellation. In fact, from the point of view of the statistical errors in the Monte Carlo we 
want to choose y,,,in/yeut as large as possible in order to avoid large cancellations between 
the two and three parton contributions. However choosing this ratio too large would induce 
a systematic error due to terms of O(ymi,,) which arc not included in the Monte Carlo error 
estimate. This is clearly seen in figs. la-lc, where at relatively large y,,,i,,, the statistical 
error is very small but the deviation from the analytic result is large. So from the point of 
view of the systematic errors we have to choose ymin/ysu~ as small as possible. 

The compromise between these two conflicting requirements is that we must choose 

YmdY cuL such that the statistical Monte Carlo error starts to dominate over the system- 
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Fig. 3. The next-to-leading order K-factor, KS = uNLo/ uLo, for three jet production as a function 
of y,,,;,/yat for (a) yaL = 0.10, (b) yCYt = 0.03 and (c) yNt = 0.01 with statistical errors. 
Fig. 3d shows the yasut dependence of the next-to-leading order three jet cross section in the E-scheme 
for y,,,,;,/y,t = 0.01 with statistical errors. The leading order three jet cross section is shown as a 
dotted line. 



atic error.’ To demonstrate this procedure, we choose ym;,,/ynrr = 0.10. For ymr = 0.03 
(fig. lb) and yNi = 0.01 (fig. lc) we are clearly within the statistically dominated region. 
On the other hand, for ycvt = 0.10 (fig. la) we are on the borderline and for ycut > 0.10 
the Monte Carlo will make a systematic error. This is shown in fig. Id where we plot the 
two jet cross section as a function of y-t with y,,,;,, = ymt/10 for 10 x (10,000 + 10,000) 
events.’ The solid line is the analytic result (5.3). As can be seen for yN1 < 0.10, within 
statistical errors, the Monte Carlo estimate for the two jet cross section agrees well with the 
analytic result. However for yat > 0.10 a clear deviation from the analytic answer develops 
due to the systematic error generated by our approximations. Of murse, choosing the ratio 

YlniJYd smaller in this region, e.g. ymin/ysut = 0.01, removes the systematic error. 

Since the integration over the jet momenta is done by the Monte Carlo, we can examine 
the next-to-leading order corrections to any variable in two jet events. To illustrate this 
flexibility, we show an assortment of differential cross sections in fig. 2, where we have 
chosen y,* = 0.03, y m;n = y,,/lO and 10 x (10,000 + 10,000) events. The leading order 
results are given by the solid lined histogram, while the next-to-ieading result is shown as 
data points with statistical errors. 

Figs. 2a and 2b show the transverse energy distribution for the highest ET-jet (open 
points) and the lowest ET-jet (solid points). Although the two jets balance in ET at leading 
order, this is not always the case at next-to-leading order. For example, in the E and 
EO-schemes (fig. 2a) the transverse energies of the jets are not necessarily equal at next-to- 
leading order. This is a result of the fact that when a three parton event is clustered to a 
two jet event the energy of the “two parton” jet is equal to iP;l + isz;l, while the energy of 
the “one parton” jet has an energy equal to lP; + $21 which is smaller. On the other hand, 
in the P-scheme (fig. 2b) the “two parton” jet energy is resealed during the clustering (see 
table 1) such that its energy is equal to the softer “one parton” jet. This also implies that 
the P-scheme ET distribution is equal to the soft ET distribution in the E and EO-schemes. 

Fig. 2c shows the angular distribution between the jets and the incoming electron beam. 
We see that the shape of the angular distribution is unchanged by the next-to-leading order 
corrections. Furthermore, there is no jet scheme dependence. This is readily understood by 
inspecting the jet algorithms of (5.2). Since the angular distribution depends only on the 
direction of the jet axis momentum vector it is unaffected by the momentum resealing factor 
0 and the two jet momentum vectors are always back to back. 

‘This implies that the right choice of y,,,i,/y.,, depends on the number of events used in the evaluation 
of the parton crocus sections. Increasing the number of events will decrease the statistical error while leaving 
the systematic error unchanged. To avoid becoming sensitive to the systematic error, one should therefore 
choose (L smaller value of y,,,;,,/yGur. 

‘Even with this limited number of events, the Monte Carlo errors for II practical application are quite 
acceptable. 
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5.2 Monte Carlo results for e+e- + 3 jets 

Just as in the two jet Monte Carlo discussed in the previous subsection, the next-to-leading 
order correction to three jet production is built up of two contributions, the next-to-leading 
order three parton contributions and the leading order four parton contributions. Both of 
these processes can also contribute to the second order two jet cross section. This makes the 
next-to-leading order three jet cross section sensitive to the details of the jet algorithm, since 
the four parton --+ two jet transition involves a double clustering, and is therefore sensitive 
to the cluster recombination scheme used (see table 1). 

First of all we have to determine the right y,,,i,Jy cut ratio such that we are in the statis- 
tically dominated region and we show the y,,,i,, dependence of the next-to-leading three jet 
cross section in figs. 3a, 3b and 3c for different yNL values. The ymin behaviour is clearly 
much more complex than in the two jet case of fig. 1. This is readily understood from the 
three parton resolved cross section of (4.26) where we see a complex interaction between the 
hard invariants and the cutoff y,,,;,,. This is absent in the two jet case (4.22) since there the 
only hard invariant mass, sQ1~, is equal to the center of mass energy. Nevertheless, we see 
that taking y,,,;, = y,,/lOO ensures that we are in the statistically dominated region while 
keeping the statistical error as small as possible with 10 x (IO, 000 + 100,000) events. 

In fig 3d we show how the statistical error depends on the specific value of yNt for the 
three jet cross section at next-to-leading order using the E-scheme (the dotted line indicates 
the leading order three jet cross section). As expected, the statistical error steadily grows 
with decreasing yatr due to the worsening cancellation of the ymin dependence between the 
three and four parton cross sections. 

One important motivation for calculating the next-to-leading order corrections to the 
three jet cross section is the expected reduction in the renormalisation scale dependence. 
This scale dependence, indicated by p, is shown in fig. 4 for several values of y,,. The 
dotted lines indicate the leading order behaviour, generically described by, 

dcLO _ a.W) x d* 
3 jet - (4 

2r 

The next-to-leading order corrections have the canonical form, 

df13 Jet 
NLOz(F$)) x{[ l+a,(P’)b”log(&)] xdA+ (9) -} . (6.7) 

The logarithmic term proportional to the leading order result is generated by coupling con- 
stant renormalisation and is the term which reduces the scale dependence of the coupling 
constant, thus rendering the next-to-leading order three jet cross section less dependent on 
the renormalisation scale. It is worth noting that only the term proportional to the leading 
order part, dA, has a reduced scale sensitivity. The term d B, which contains the finite 
virtual corrections to the three parton cross section and the four parton contributions, has, 
at this order, no reduction in scale dependence. This explains the rather different scale 
dependence at next-to-leading order for different choices of yNL. For very small yat = 0.004 
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(fig. 4d) the reduction is most significant, since the four parton content in the three jet 
cross section is strongly reduced. Increasing YNt will increase the four parton contribution, 
thereby increasing the scale sensitivity. This is clearly shown in figs. 4a-4c. Note that even 
in fig. 4a, with Y,* = 0.10 there is still a reduction in scale dependence. 

Direct comparison of the Monte Carlo with the experimental data is difficult without 
exact knowledge of the experimental situation. However it is of interest to see how well 
the experimental hadronic data, corrected for detector acceptance, compares with next- 
to-leading order parton level calculations. One particularly interesting quantity is the jet 
fraction for which it is quite straightforward to make this comparison and see how well fixed 
order perturbative calculations compare with real hadronic data. 

The n-jet fraction f,,(ycut) is defined by, 

MY.“d = 
cn jet(Y=t) = Qn jet(Y-t) 

c 
m am jet(YNt) Qhad ’ 

(54 

With the trivial identity C,,, f,,,(ycut) = 1 we can use the calculated three and four jet cross 
sections (both at o(or:)) and total hadronic cross section Chad at o(ai) [38] to calculate the 
two jet fraction fa(yNt) at the same order. Fig. 5 shows prediction for the three (CJ(ui)) jet 
fractions for several schemes’ as solid lines (with errorband) together with the hadronic jet 
fractions as tabulated by the OPAL collaboration in ref. [3] (points). As before, we choose 
y,,,i,, = ~,~/100 and generate 10 x (10,000 + 100,000) events. 

From fig. 5 we immediately see that not all jet algorithms work equally well for comparing 
the hadronic data with the fixed order calculation. In particular, the E-scheme (fig. 5a) does 
very poorly. Note that this is the only scheme which does not retain the masslessness of 
the recombined vector during the clustering phase. The other three schemes do as well 
as can be expected from an order ai comparison with the data. The EO-scheme (fig. 5b) 
underestimates the three jet fraction somewhat, while the P-scheme overestimates the three 
jet fraction by a similar amount. The PO-scheme agrees remarkably well with the data. 
Whether deviations between the data and the calculation are due to hadronization effects 
or higher order effects is impossible to tell from the calculation. 

We notice that for yat 5 0.02, the QCD calculation does not reproduce the data. This 
is not a surprise since we expect a deviation from the experimental data for small Ycvr in 
perturbative calculations. This is, in a sense, associated with the growing five jet contribu- 
tion, which is not included in a theoretical 0(af) calculation. More precisely, for small yatr 
terms O(a: logs^-‘(y,,)) are no longer small and have to be resummed [39]. 

Finally, in fig. 6, we show all relevant angular correlations of the three jet system in the 
P-scheme. The jets are ordered according to their energies, jet 1 being the most energetic 
jet and jet 3 the least energetic. As before, we generate 10 x (10,000 + 100,000) events with 
y,,,i,, = y,t/lOO. The leading order result is shown as a solid histogram, while the next- 

‘Fig. 5d is the jet fraction in the PO-scheme, which is equivalent to the P-scheme except that after each 
clustering the total visible energy is recalculated from the final state momenta and all the invariant masses 
are scaled by the visible energy rather than Q’. 
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to-leading order results are shown as points together with the estimate of the statistical 
error. 

Figs. 6a-c show the angular differential cross sections amongst the three jets. Compared to 
leading order, there are slight deviations in the shape at next-to-leading order. For instance 
in fig. 6c we see that the distribution obtains tails, which were “forbidden” at leading order 
due to energy/momentum conservation. Similar changes are present in figs. 6a and 6b. 

The angle of the three jets with respect to the incoming electron beam are shown in 
figs. 6d-f. The two most energetic jets (figs. 6d and 6e) retain a characteristic “two jet” shape 
(compare with fig. 2~). This is understood by realizing that these jets are predominantly 
formed from quarks, while the gluonic jet is usually the softest jet. These effects seem to 
be maintained at next-to-leading order, where the identification of a jet with a particular 
parton is no longer clear. 

6 Conclusions and Outlook 

The main motivation for this paper has been to set up a explicit and general method 
of dealing with the final state infrared and collinear divergences contributing to the next- 
to-leading order corrections to multijet events, while avoiding algebraic and combinatorial 
complexities. Furthermore the method allows a numerical evaluation of phase space, making 
it possible to implement jet algorithms, detector acceptance, etc., numerically resulting in 
very flexible Monte Carlo’s as was explicitly shown in sec. 5. 

The divergent soft and collinear factors are independent of the hard process, which means 
they can be applied to any scattering process involving final state partons. Because of the 
factorisation of the singular contributions of the matrix elements one obtains a cancellation 
of the soft and collinear divergences against the virtual divergences without specifying the 
hard process. In fact, it is straightforward to extract the soft singularities from the virtual 
graphs, as was shown in sec. 4. Because of the factorisation we can avoid squaring the 
resolved matrix elements in d-dimensions altogether, which is a valuable simplification of 
the calculation. We can simply evaluate the resolved matrix elements using the standard 
methods developed for tree level matrix elements, such as helicity methods [18], recursivity 
[20, 101 etc.. Furthermore, because of the factorisation, the structure of the next-to-leading 
order corrections in QCD is now transparent and systematic. 

With the method described in this paper only the virtual graphs remain to be calculated, 
although a lot of the singular behaviour of these graphs can be understood. We have explic- 
itly recalculated the one-loop helicity amplitudes for e+e- -+ 2 and 3 partons.’ It was then 
straightforward to construct the Monte Carlo programs for the fully differential e+e- -+ 2 
and 3 jet cross sections. We found it unnecessary to write a sophisticated phase space gener- 
ator, a simple importance sampling over the final state invariants being sufficient, although 
this procedure might need to be improved upon if we want to include more final state jets 
at the next-to-leading order. 

‘To go beyond this in e+e- involves the evaluation of one-loop five-point integrals. 
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The next obvious step is to include initial state partons, which necessitates a careful 
treatment of the initial state collinear divergences in relation to the parton structure functions 
while keeping the hard process fully diff erential. Once this is understood, we can extend the 
method to processes involving multijet final states in deep inelastic and proton-a&proton 
collisions. For example, the processes, 

@-+W/Z+O, ljets+!E+O, ljets, (6.1) 

ad, 
ep -i e + 1, 2 jets, (6.2) 

at next-to-leading order are obtained by crossing the resolved matrix elements given in 
section 5. 
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A Matrix elements relevant for efe- -+2 and S jets. 

In this appendix we provide a representation of the matrix elements for e+e- + 2, 3 and 
4 partons which are relevant for e+e- + 2 and 3 jet production at next-to-leading order. 
Since all poles in E have been cancelled we may evaluate these currents in 4-dimensions. A 
convenient method to evaluate matrix elements is using a helicity basis based on Weyl-van 
der Waerden spinors which is described in detail in [40, 71. 

A.1 Weyl-van der Waerden spinor calculus 

The basic quantity is the two-spinor $a or $* and its complex conjugate $A or 4,“. 
Raising and lowering of indices is done with the antisymmetric tensor E, 

CAB = L AB - -“Ah = E 

We define a antisymmetric spinorial “inner product”, 

(&?i)l) = ‘,hAEBAd2B = ?hA$‘ZA = -&%A = -(‘&Jfl), (-44 

and, 

(lhh)’ = ki$J~. (A.31 
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Any momentum vector K, gets a bispinor representation by contraction with QG, 

KAB = uzBKM = 
Ka+K, KI+~Kz 
K1-iKg K,-K, (A.41 

where 0” is the unit matrix and qi are the Pauli matrices. Since, 

up VAB = ,&WV, 

we have, 
KiBPAB = 2K. P. 

For light-like vectors one can show that, 

(A.51 

c.44 

KAB = kAkB, (A.71 

where. 
kA = (KI -$“vv 

0 3 (A.81 

such that for light-like vectors (A.6) becomes, 

2K. P = (kp)(kp)* = I(kp (A.91 

We usually denote four-momenta by upper case and the related spinors by lower case letters. 

For massless spin-i particles the four-spinors can be expressed in two-spinors as follows, 

u+(P) = L(P) = “0” , 
( 1 

u-(P) = .+(P) = (p; ) 1 

a+(Q) = i?-(Q) = ( 0, -iq~ ) , 

a-(Q) = e+(Q) = ( iqA, 0 ): (A.10) 

The 7 matrices now become, 

0 
7’ = 

;&B 
(A.ll) 

so that e.g., 
a+(Q)y”v-(P) = piiodflp~ . (A.12) 

The general electroweak vertex for vector boson V coupling to two fermions is denoted 
by ie6;jr,Y’l’z, where i and j are the colour labels associated with the fermions fi and fi 
respectively. The vertex contains left- and right-handed couplings, 

p,f,f2 = LV 1 - 76 
@ fifiYW 2 ( > 

1+ 76 - +$‘,,re --y- y ( > 
(A.13) 
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where for a photon, 

Lit, = %f, = -Qr,hzr (A.14) 

and for a Z boson, 

Lit, = 
I,‘I - sin’ BwQf - sin BwQ f, 

sin 0~ co8 BUT ‘Jhfl, Rif2 = co8 (gw h. (A.15) 

Here, Qf represents the fractional electric charge, I,f the weak isospin and 0~ the weak 
mixing angle. In the Weyl-van der Waerden notation, the vertex JJ:fifz becomes, 

p,flh = 0 -iL;fzupdA 
II AB 

i%fS~P 0 

For the polarization vectors of outgoing gluons and photons we use the spinorial quantities 

&(K) = J;iE , (A.17) 

e&(K) = fis (A.18) 

The gauge spinor b is arbitrary and can be chosen differently in each gauge invariant expres- 
sion. A suitable choice can often simplify the calculation. 

The following relation is often useful, 

up:“” = 26A%,D (A.19) 

A.2 Tree level matrix elements for efe- +2, 3 and 4 partons 

At lowest order, and including all orders in the number of colours, the squared matrix 
elements for e+e- -+ qij + ng for n = 0,l and 2 are given by, 

(A.20) 

(A.21) 

I%(QI;~s)V~~’ = e’~I~,(Q~;~,)VC12, 

/&(QI; l;C?.1)Vp12 = es (q) (“; ‘) IS,,(Q1;l;g,)Vplz, 

and, 

I$(Q1; 1,2;i&)V’l’ = e’ (q)’ (“; ‘) 

1;1,2;~pq2 - &(QI; i,%G2i,)v~12 , 1 (A.22) 

respetitively. In the two-quark two-gluon process (A.22), 

&(Qx; i,%g,) = &(QI; 1,2;7&) + ~,(QI; 2,l;Qs). 
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We can use the spinor calculus of the previous section to express the lepton current V, in 
terms of the helicities of the incident e+ and e- (with momenta Pi- and P- respectively). 
Explicitly, 

L’ 
V;‘(e++,e--) = ea,ABpapi2, 

3 

qe+-, 
R7 

e-+) = ec7;Bpip+ 

v;(e++,e--) = eL7,ABpTp+ L,z, 
A ‘s-Mj+iI’zMz’ 

vF(e+-,e-+) = ecT&yptp- R.“. 
A Bs-Mj+irzMz’ 

(A.24) 

Note that, the full matrix element for any process is summed over both photon and Z boson 
exchange. 

The hadronic current S,, is given by, 

&(QI+; lh ,..., nA,;&) = Rr,f~(~)-(r48S~B(Q1+;1X1,. . .,n&,;&), (A.25) 

S,.(Ql-; IL,. . . , nX,;Q,+) = L~f~(JZ)“~~S~s(Q~-;l~~,...,n~~;g,+). (A.26) 

We list here the quantities SA~(Q~+; 1X,, . . . , n&,;gz-) for n = 0,l and 2. The currents 
with the quark helicities flipped follows from parity conservation, 

SAB(QI-; 1x1,. . . , h;G;j,+) = (S~,(Ql+;l(-~l),...,n(-~,);Q1-))’. (A.27) 

Charge conjugation implies the following relations between currents with different helicities, 

SAB(QI&,; 1A I,. . . ,d,;~‘,+J = (-l)“s~&&,;A,. . . , lh; QJ,,). 

The following notation will also be useful, 

(A.28) 

(alB+Cld) = u,$F(B+C)‘~ = (ab)*(db) + (a~)*(&), (A.29) 

where the last step only holds for light-like vectors. All helicity amplitudes are related to 
the amplitudes with Xgl = + and Xq, = -. First of all, at tree level, we have the trivial 
n = 0 result, - 

SAB(QI+; Qr-1 = P~AGE. (A.30) 

Secondly, the n = 1 result is, 

S,,(Ql+; l+;&) = (Q1; $$“,. (A.31) 
11 12 

Thirdly, for 7~ = 2 we have three helicity combinations, 

S,,(Ql+; 1 + 2+;&) = 
(QI + KI + Ks)A&‘Q~~ 

hkd(klks)(k~q~) ’ 

SAB(Q1+‘l + 2--;‘i,--) = 
(akd*(eW(Q1+ K&k,Dq,, 

-(q,kl)(Kl + K2)z(Ql + Kl + &)2 
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(hi?,)*W?,)~,,i(K~ + Q&&f 
+(k%)*(& + &)‘(KI + Ka +&J’ 
_ (QI + K&&'(Kz + ~&Bkf 

(nkd(k~%)*(Kl + Kz)~ ' 
- 

sAB(Q1+'l - 2+i Qa-) = 
(h%Yq,.si(Kl + i&)&f 

(k2q2)(Kl + K-)l(Kl + & +i&' 
hW2(Q1 + &).&Pm 

- (ah)*(Kl + K#(Q, + KI + KS)* 

(k~%Wd*~lA%a 

+ (ddl(ksiis)(K1 + K# 
(A.32) 

Finally, the lowest order matrix elements for e+e- + qqqq at all orders in the number of 
colours are given by, 

where, 

IZ;(Q~,G; Q~,GPI’ = e2 (q)’ (“L; ‘) 

x 
1 
IUQ~JZ; Q~JJ,)v~~~ + /x,,(Q~,G,; Q~,QJv~I~ 

+$ae {X,(Ql,V2; Q3,Q,Y (WQ1,G44; Q,,Q,)v~)+} 1, (~.33) 

4(Qlt2i,; Q3rQl) = -%(QI,&; Qa,Qg) + Ap(Qs,& Q~,gd). (A.34) 

The leptonic current is given by (A.24) while A,, is given by, 

A,(Ql + Gb,; Qd,,%-1 = R;fi+AAB(Q1 + &~AJ,; QJQ,Qa-), 

A,(Ql -i&,; QdQ,i&+) = Lv w’$‘be(Q~ -i&-lx,,; Q&,6+). (A.35) 

AS in the two quark case, the helicity amplitudes with flipped helicities s.re obtained from 
the parity relation, 

AAB(QI - b,Gr - x4,; Qs - &~,~a - X4,) = (ABA(QI~Q,~&,; Q&,~~XQ~))*, (A.36) 

while charge conjugation yields the following relations, 

AAB(Q~XQ,~,X~,;QB’\~JB,X~,) = AAB(Q~X~,QIX~,;Q~X~,Q~X~,) 

= AAB(QIXQ~Q~~Q,;Q,X~,Q~X~,) 

= AAB(~~~~XQIQ~~Q~;~*X~,Q~XQ,). (A.37) 

All helicity amplitudes are therefore determined by, 

AA~(QI + Q,-; Q3 +&-) = -,$;~);~;(; Q;);T& 
4 1 1 

(mhc2', +QAJ~$ 

+ (Qs + %)'@z + Q3 + Q,,)" ' 
(A.38) 
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A.3 Next-to-leading order matrix elements for e+e- -+2 and 3 partons 

As described in section 4, the next-to-leading order matrix elements for efe- --t qq have 
the form, 

1~&hi~2)“‘l~ = e2N (1 - $) FC(Ql;~,)IS,(Q,;~~)V”I’ + F(Q,;i&), (A.39) 

where, because of our assignment of the finite pieces, 

F(Q,;G,) = 0. (A.40) 

Helicity amplitudes for V, and SP(Ql;q’,) are given in the previous section. The dynamical 
K-factor K(Q,;G,) is given by (4.22). 

Similarly, the next-to-leading order matrix elements for et e- -+ qq + 9 are given by, 

Ig.+(Ql; l;&)V’I; = ea (9) (“In; ‘) 

x (rc(Ql; l;Qd - &(Q&?d) IS,(Ql; 1;~&“‘12 + ~(QI; 1;8J, (A.41) 

where K(Q,;v,) is given by (4.31) with n = 1. With this assignment of the finite contribu- 
tions, we find, 

F(Ql; l;gz) = 2 (y) a= {(s,(Ql; l;~$“)(S~)(Q,; 1;Q,)V’)+}. (A.42) 

The finite next-to-leading order current S, --(l) satisfies (A.25)-(A.28). Explicitly, we find, 

(A.43) 

The other helicity amplitudes are obtained from S(l) is(+; +; -) by the usual parity and charge 
conjugation relations, while the coefficients ai, pi and 7i are written in terms of the scaled 
invariant masses, yij = s;j/Q’, 

- a0 = -R(YQA 9 YK,s~~) - YK,G,(4 3YK,G,) lOdYK,Q, 1 - YK,g, 
2(1 - 1’ w YK,is, - YKIG,) 

+ 42, 

- p,, = -R(YQ,K,,Y~,Q~) + (4 3yK1Gy) lOdYK,& + 1+ 60, 
w - 1 YK& 

YK,g, 
7o = +2(1 -YK,g,y 
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-R(YQ,~, 7 YQA) - 
(l - yQ,&)' 

02 = 
Y&K, 

RbQ,t&’ Yd - yQ K, 
!k!iG log(yQ,is,) 

yK&(4 - 3yKt~, 1 
- 

2(1 - YK,&’ 
-+ 

Yh, 

YQ,KI(~ - yK,i$,) 1 
10gbK>~2) - ql”;“: B ) + &, 

L 1 

/A = --IZ(YQ,Q~ I YQ~C ) + 
yQ&(l - yQ?&) 1 

Y&K, 
+- 

YQ,Kl ) 
R(YQ,G~,YK,~,) 

(1 T;QyG,)’ + 

1 - YK,& 

YQJG 
10dYQ,i&) 

7s = 

( 4 - 3yK,7& 

+ 2(1 - YK,?),) 
+ 

YK,ga 

YQtKs 
l‘%(yK,~,) + (1 !Q;px:q,) + “’ 

+z R(YQ,G, 7 YK,G,) - 
( 

YQIKI _ - 

L L 
(1 - Y~,~,)~ YQ:K, ) 10g(yQ1G2) 

- - 

+ 
yK,iS, 

YQ,KI(~ - YKd 
lOdYK,G, I+ (1 Y;;;Y&J + 2(15;*& 1 

(A.44) 

where the function R(t, y) is defined in terms of the dilogarithm (5.5) as, 

R(+, y) = log(z) log(y) - log(z) log(l - z) - log(y) log(l - y) 

+G - Liz(z) - Liz(y). 

The coefficients & are given by, 

3 
60 = +(yQd - +dyK,&2), 

62 = -;log(YQ,p,)l 

(A.45) 

(A.46) 

and are generated by our choice of Vi?’ (4.20). For example, the choice (161, 

v;; = v;;’ = ;vqy = -; - 2, 

corresponds to, 
6, = 62 = 0, 

with the appropriate changes in X(Q1;gz) and X(Q1; l;gia). 

(A.47) 

(A.48) 

42 



References 

[l] UA2 CoIIaboration, presented by P. Lubrano, Jet Physics with the UA2 detector, Pro- 
ceedings of the 4th Recontres de Physique de la VaIIee D’Aoste, La Thuiie, March 1990. 

[2] CDF Collaboration, presented by S. Gem, Recent Results from the CDF experiment at 
the Tevatron Proton-Antiproton Collider, 8th INFN Eloisatron Project Workshop on 
the Higgs Boson, Erice, Italy, July 1989. 

[3] DELPHI CoIIaboration, Phys. L&t. B247 (1990) 167; 
L3 Collaboration, Phys. L&t. B248 (1990) 464; 
OPAL Collaboration, 2. Phys. C4Q (1991) 375. 

[4] B.L. Combridge, J. Kripfganz and J. Ranft, Phys. Lett. B70 (1977) 234; 
R. Cutler and D. Sivers, Phys. Rev. D17 (1978) 196. 

[5] T. Gottschalk and D. Sivers, Phys. Rev. D21 (1980) 102; 
Z. Kunset and E. Pietarinen, Nucl. Phys. B164 (1980) 45; 
F.A. Berends, R. Kleiss, P. de Causmaecker, R. Gastmans and T.T. Wu, Phys. L&t. 
B103 (1981) 124. 

[6] J.F. Gunion and Z. Kunszt, Phys. Lett. B159 (1985) 167; B176 (1986) 163; 
Z. Kunset, Nucl. Phys. B271 (1986) 333; 
J.F. Gunion and J. Kalinowski, Phys. Rev. D34 (1986) 2119; 
S.J. Parke and T.R. Taylor, Nucl. Phys. B269 (1986) 410; Phys. Rev. D35 (1987) 313. 

[7] F.A. Berends and W.T. Giele, Nucl. Phys. B294 (1987) 700. 

[B] M. Mangano, S.J. Parke and Z. Xu, Nucl. Phys. B298 (1988) 653; B299 (1988) 673. 

[9] F.A. Berends, W.T. Giele and H. Kuijf, Nucl. Phys. B333 (1990) 120. 

[lo] F.A. Berends, H. Kuijf and B. Tausk, “Four and six quarks in multiparton processes”, 
Leiden Preprint, 1990 (to appear in Nucl. Phys. B). 

[ll] R.K. EIIis and R.J. GowaIves, Proceedings of the Workshop on Super High Energy 
Physics, Eugene (1985), editor D.E. Soper; 
R. Kleiss and W.J. Stirling, Nucl. Phys. B282 (1985) 235. 

[12] K. Hagiwara and D. Zeppenfeld, Nucl. Phys. B313 (1989) 560. 

[13] F.A. Berends, W.T. Giele and H. Kuijf, Nucl. Phys. B321 (1989) 39. 

[14] F.A. Berends, W.T. Giele, H. Kuijf and B. Tausk, “On the production of a W and jets 
at hadron colliders”, FERMILAB-Pub-90/213-T (to appear in Nucl. Phys. B). 

[15] A. Ah, J.G. Kijrner, G. Kramer, Z. Kunset, G. Schierholtz, E. Pietarinen and J. Will- 
rodt, Nucl. Phys. B167 (1980) 454; 
D. Dankaert, P. de Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Phys. Lett. 
B114 (1982) 203. 

43 



[16] R.K. Ellis, D.A. Ross and A.E. Terrano, Nucl. Phys. B178 (1981) 421. 

[17] N.K. Falck, D. Graudens and G. Kramer, Nucl. Phys. B328 (1989) 317. 

[18] P. de Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Phys. Lett. B105 (1981) 
215; 
R. Kleiss, Nucl. Phys. B241 (1984) 61; 
R. Kleiss and W.J. Stirling, Nucl. Phys. B262 (1985) 235; 
Z. Xu, D.H. Zhang and L. Chang, Nucl. Phys. B291 (1987) 392. 

[19] D. Zeppenfeld, Int. J. Mod. Phys. A3 (1988) 2175. 

[20] F.A. Berends and W.T. Giele, Nucl. Phys. B306 (1988) 759. 

[21] G. ‘t Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189. 

[22] C.G. BoRini and J.J. Giambiagi, Phys. Lett. 40B (1972) 566; 
J.F. Ashmore, Nuovo Cim. Lett. 4 (1972) 289. 

[23] J. Kubar-Andre and F.E. Paige, Phys. Rev. D19 (1979) 221. 

[24] Z. Kunast and P. Nason, 2 Physics at LEP, CERN yellow report CERN 89-08, vol. 1, 
(1989) 373, edited by G. Altarelli, R. Kleiss and C. Verzegnassi. 

[25] G. Kramer and B. Lamp-e, Z. Phys. C34 (1987) 497. 

[26] G. Sterman and S. Weinberg, Phys. Rev. Lett. 39 (1977) 1436. 

[27] F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54. 

[28] T. Kinoshita, J. Math. Phys. 3 (1962) 650; 
T.D. Lee and M. Nauenberg, Phys. Rev. 133 (1964) 1549. 

1291 F.A. Berends, K.J.F. Gaemers and R. Gastmans, Nucl. Phys. B57 (1973) 381; 
F.A. Berends, R. Kleiss and S. Jadach, Nucl. Phys. B202 (1982) 63. 

[30] M. Mangano, Nucl. Phys. B309 (1988) 461. 

[31] D.R. Yen&, S.C. Frautschi and H. Suura, Annals of Physics 13 (1961) 379. 

[32] A. Bassetto, M. Ciafaloni and P. Marchesini, Phys. Rep. 100 (1983) 201; 
M. Mangano and S. Parke, Proceedings of the International Europhysics Conference on 
High Energy Physics, Uppsala, Sweden (1987), ed. 0. Botner, (1987) 201. 

[33] F.A. Berends and W.T. Giele, Nucl. Phys. BSlS (1989) 595. 

[34] P. Cvitanovic, P.G. Lauwers and P.N. Scharbach, Nucl. Phys. B186 (1981) 165. 

[35] G. Altar& and G. Parisi, Nucl. Phys. B126 (1977) 298. 

[36] G. Passarino and M. V&man, Nucl. Phys. Bl60 (1979) 151. 

44 



[37] W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Phys. Rev. D18 (1978) 3998. 

[38] K.G. Chetrykin, A.L. Kateev and F.V. Tkachov, Phys. Lett. 85B (1979) 277; 
M. Dine and J. Sapirstein, Phys. Rev. Lett. 43 (1979) 668; 
W. Celmaster and R.J. Gonsalves, Phys. Rev. Lett. 44 (1979) 560; Phys. Rev. D21 
(1979) 3112. 

[39] S. Cat& G. Turnock, B.R. Webber and L. Trentadue, Cambridge preprint 
CAVENDISH-HEP-90-16 (1990). 

[40] H. Weyl, “Gruppentheorie und Quantenmechanik”, Leipzig, (1928); 
B.L. van der Waerden, Goettinger Nachrichten (1929) 100. 

45 


